Young diagrams and N-soliton solutions of the KP equation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2004 J. Phys. A: Math. Gen. 3711169
(http://iopscience.iop.org/0305-4470/37/46/006)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.65
The article was downloaded on 02/06/2010 at 19:44

Please note that terms and conditions apply.

Young diagrams and N-soliton solutions of the KP equation

Yuji Kodama
Department of Mathematics, Ohio State University, Columbus, OH 43210, USA
E-mail: kodama@math.ohio-state.edu

Received 30 July 2004, in final form 27 September 2004
Published 3 November 2004
Online at stacks.iop.org/JPhysA/37/11169
doi:10.1088/0305-4470/37/46/006

$$
\begin{aligned}
& \text { Abstract } \\
& \text { We consider } N \text {-soliton solutions of the KP equation, } \\
& \qquad\left(-4 u_{t}+u_{x x x}+6 u u_{x}\right)_{x}+3 u_{y y}=0
\end{aligned}
$$

An N-soliton solution is a solution $u(x, y, t)$ which has the same set of N line soliton solutions in both asymptotics $y \rightarrow \infty$ and $y \rightarrow-\infty$. The $N-$ soliton solutions include all possible resonant interactions among those line solitons. We then classify those N-soliton solutions by defining a pair of N numbers $\left(\mathbf{n}^{+}, \mathbf{n}^{-}\right)$with $\mathbf{n}^{ \pm}=\left(n_{1}^{ \pm}, \ldots, n_{N}^{ \pm}\right), n_{j}^{ \pm} \in\{1, \ldots, 2 N\}$, which labels N line solitons in the solution. The classification is related to the Schubert decomposition of the Grassmann manifolds $\operatorname{Gr}(N, 2 N)$, where the solution of the KP equation is defined as a torus orbit. Then the interaction pattern of N -soliton solution can be described by the pair of Young diagrams associated with $\left(\mathbf{n}^{+}, \mathbf{n}^{-}\right)$. We also show that N-soliton solutions of the KdV equation obtained by the constraint $\partial u / \partial y=0$ cannot have resonant interaction.

PACS numbers: 02.30.Jr, 02.30.Ik, 05.45.Yv

1. Introduction

In this paper, we consider a family of exact solutions of the KP equation,

$$
\frac{\partial}{\partial x}\left(-4 \frac{\partial u}{\partial t}+\frac{\partial^{3} u}{\partial x^{3}}+6 u \frac{\partial u}{\partial x}\right)+3 \frac{\partial^{2} u}{\partial y^{2}}=0
$$

The solution $u(x, y, t)$ is obtained from the τ-function $\tau(x, y, t)$ as

$$
u(x, y, t)=2 \frac{\partial^{2}}{\partial x^{2}} \log \tau(x, y, t)
$$

It is well known that some solutions can be obtained by the Wronskian form (for example, see [2] or the appendix in [1]),

$$
\tau=\operatorname{Wr}\left(f_{1}, \ldots, f_{N}\right):=\left|\begin{array}{ccc}
f_{1}^{(0)} & \cdots & f_{N}^{(0)} \tag{1.1}\\
\vdots & \ddots & \vdots \\
f_{1}^{(N-1)} & \cdots & f_{N}^{(N-1)}
\end{array}\right|
$$

where $f_{i}^{(n)}=\partial^{n} f_{i} / \partial x^{n}$, and $\left\{f_{i}(x, y, t) \mid i=1, \ldots, N\right\}$ is a linearly independent set of N solutions of the equations,

$$
\frac{\partial f_{i}}{\partial y}=\frac{\partial^{2} f_{i}}{\partial x^{2}} \quad \frac{\partial f_{i}}{\partial t}=\frac{\partial^{3} f_{i}}{\partial x^{3}}
$$

Throughout this paper, we assume $f_{i}(x, y, t)$ to have the form

$$
\begin{equation*}
f_{i}=\sum_{j=1}^{M} a_{i j} \mathrm{e}^{\theta_{j}}, \quad \text { for } \quad i=1, \ldots, N, \quad \text { and } \quad M>N \tag{1.2}
\end{equation*}
$$

with some constants $a_{i j}$ which define the $N \times M$ matrix $A_{(N, M)}:=\left(a_{i j}\right)$, and the phase functions θ_{j} are given by

$$
\begin{equation*}
\theta_{j}(x, y, t)=-k_{j} x+k_{j}^{2} y-k_{j}^{3} t+\theta_{j}^{0} \quad \text { for } \quad j=1, \ldots, M \tag{1.3}
\end{equation*}
$$

Here k_{j} and θ_{j}^{0} are arbitrary constants, and throughout this paper we assume k_{j} being ordered as

$$
k_{1}<k_{2}<\cdots<k_{M}
$$

Then choosing particular forms for the matrix $A_{(N, M)}$, one can obtain several exact solutions of the KP equation. As the simplest case with $N=1$ and $M=2$, i.e. $\tau=f_{1}=a_{11} \mathrm{e}^{\theta_{1}}+a_{12} \mathrm{e}^{\theta_{2}}$ with $a_{11} a_{12}>0$, we have 1 -soliton solution,

$$
\begin{equation*}
u=2 \frac{\partial^{2}}{\partial x^{2}} \log \tau=\frac{1}{2}\left(k_{1}-k_{2}\right)^{2} \operatorname{sech}^{2} \frac{1}{2}\left(\theta_{1}-\theta_{2}\right) \tag{1.4}
\end{equation*}
$$

Here we assumed $a_{11}, a_{12}>0$ and absorbed them into the constants θ_{j}^{0}, so that we have $a_{11}=a_{12}=1$. Note here that if $a_{11} a_{12}<0$, then the τ-function has zeros and the solution blows up at some points in the $x-y$ plane. In the $x-y$ plane, 1 -soliton solution describes a plane wave $u=\Phi\left(k_{x} x+k_{y} y-\omega t\right)$ having the wavenumber vector $\mathbf{k}=\left(k_{x}, k_{y}\right)$ and the frequency ω,

$$
\mathbf{k}=\left(-k_{1}+k_{2}, k_{1}^{2}-k_{2}^{2}\right) \quad \omega=k_{1}^{3}-k_{2}^{3}
$$

Here (\mathbf{k}, ω) satisfies the dispersion relation, $4 \omega k_{x}+k_{x}^{4}+3 k_{y}^{2}=0$. We refer to the 1 -soliton solution as a line soliton, which is expressed by a line $\theta_{1}=\theta_{2}$ in the $x-y$ plane for a fixed t. Then the slope of the line $c=\mathrm{d} x / \mathrm{d} y=-k_{y} / k_{x}$ represents the velocity of the line soliton in the x-direction with respect to y; that is, $c=0$ indicates the direction of the positive y-axis. As in paper [1], we also call a line soliton [i,j]-soliton, if the soliton is parametrized by the pair $\left(k_{i}, k_{j}\right)$. In the case of (1.4), the soliton is [1, 2]-soliton with the velocity $c=k_{1}+k_{2}$. Then the ordinary N-soliton solution consisting of N line solitons, [$2 j-1,2 j$]-soliton with $j=1, \ldots, N$, is obtained from the following matrix $A_{(N, M)}$ with $M=2 N$ [5],

$$
A_{(N, 2 N)}=\left(\begin{array}{cccccccccc}
1 & 1 & 0 & 0 & 0 & \cdots & \cdots & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & \cdots & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \ldots & \cdots & \ldots & \ddots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & \cdots & \cdots & \cdots & \cdots & 0 & 1 & 1
\end{array}\right)
$$

Note here that all nonzero entries are normalized to be one by choosing appropriate constants θ_{j}^{0}, and any $N \times N$ minor of the matrix $A_{(N, 2 N)}$ is non-negative. The fact that all $N \times N$ minors are non-negative (or non-positive) is sufficient for the solution to be non-singular (see below).

Also in paper [1], we found that if all the minors are nonzero and have the same sign, the solution u gives an $(M-N, N)$-soliton solution consisting of $M-N$ incoming line solitons as $y \rightarrow-\infty$ and N outgoing line solitons as $y \rightarrow \infty$. The set of τ-functions with different size N then provide the solution of the Toda lattice. In particular, if $M=2 N$, we have N-soliton solution in the sense that the solution has the same set of N line solitons in both asymptotics for $y \rightarrow \pm \infty$ (i.e. the sets of incoming and outgoing solitons are the same). However as mentioned in [1], this N-soliton solution is different from the ordinary N-soliton solution, and the interaction of any pair of line solitons is in resonance, i.e. every interaction point of line solitons forms a Y-shape vertex satisfying the resonant condition among those three solitons. In this case, the matrix $A_{(N, 2 N)}$ can be written in the following row reduced echelon form (RREF),

$$
A_{(N, 2 N)}=\left(\begin{array}{cccccccc}
1 & 0 & \cdots & 0 & * & * & \cdots & * \\
0 & 1 & \cdots & 0 & * & * & \cdots & * \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1 & * & * & \cdots & *
\end{array}\right)
$$

where the entries marked by ' $*$ ' are chosen so that all the $N \times N$ minors are nonzero and positive (i.e. all the $*$ of the last row should be all positive, and those in the second row from the bottom are negative and so on). Note here that those $*$ are all nonzero. Then the line solitons in N-soliton solution of the Toda lattice hierarchy are given by $[j, N+j]$-soliton for $j=1, \ldots, N$.

We then expect that the general case of N -soliton solutions has a mixed pattern consisting of resonant and non-resonant interactions among those line solitons. In this paper, we classify all the possible N-soliton solutions obtained by the τ-function (1.1) with f_{j} in (1.2) and $M=2 N$. The classification is to determine all possible patterns of interactions, and it is done by constructing a specific form of the coefficient matrix $A_{N}:=A_{(N, 2 N)}$ in (1.2) for each class of N-soliton solutions. It turns out that a complete classification of N-soliton solutions can be obtained by the complementary pair of ordered sets of N numbers, $\mathbf{n}^{+}=\left(n_{1}^{+}, \ldots, n_{N}^{+}\right)$ and $\mathbf{n}^{-}=\left(n_{1}^{-}, \ldots, n_{N}^{-}\right)$, which are related to the dominant exponentials in the τ-function for $x \rightarrow \pm \infty$ and each soliton is given by $\left[n_{j}^{+}, n_{j}^{-}\right]$-soliton. Note that with the set $\{1, \ldots, 2 N\}$, there are $(2 N-1)$!! number of different sets of N pairs. We then claim that each set of N pairs corresponds to an N -soliton solution, and provides an explicit way to construct all those N -soliton solutions.

It is also well known that a solution of the KP hierarchy is a GL(∞)-orbit on an infinite-dimensional Grassmannian (Sato Grassmannian) [9]. Then the N-soliton solution can be identified as the $2 N$-dimensional torus orbit on the Grassmannian $\operatorname{Gr}(N, 2 N)$, and the coefficient matrix A_{N} represents a point on $\operatorname{Gr}(N, 2 N)$. Since the Grassmannian has the Schubert cell decomposition, one can first classify the matrix A_{N} using the decomposition, i.e. identify the cell A_{N} belongs to. This classification corresponds to the set \mathbf{n}^{+}, and the \mathbf{n}^{-}gives a further decomposition of the cells to classify the interaction patterns of N-soliton solutions. We then define a pair of Young diagrams $\left(Y^{+}, Y^{-}\right)$associated with the pair of the number sets $\left(\mathbf{n}^{+}, \mathbf{n}^{-}\right)$. In particular, the number of resonant vertices in the N-soliton solution
parametrized by $\left(Y^{+}, Y^{-}\right)$is given by

$$
\frac{N(N-1)}{2}-\left|Y^{+}\right|-\left|Y^{-}\right|
$$

where $\left|Y^{ \pm}\right|$denote the size (degree) of the diagrams, i.e. the number of boxes in the diagrams (theorem 4.3).

The paper is organized as follows. In section 2, we give a general basic structure of the τ-function, and present all types of 2-soliton solutions, which provide the building blocks for the general case of N-soliton solutions. Here we also introduce the pair of numbers ($\mathbf{n}^{+}, \mathbf{n}^{-}$), and the Young diagrams $\left(Y^{+}, Y^{-}\right)$. In section 3, we briefly introduce the Grassmannian $\operatorname{Gr}(N, M)$ and the Schubert decomposition of $\operatorname{Gr}(N, M)$. We also identify N-soliton solution as a $2 N$-dimensional torus orbit on $\operatorname{Gr}(N, 2 N)$, and briefly mention that $\operatorname{Gr}(N, 2 N)$ contains all possible (m, n)-soliton solutions for $1 \leqslant m \leqslant N$ and $1 \leqslant n \leqslant N$, which are distinguished by the Schubert decomposition. Here (m, n)-soliton is the solution consisting of m incoming solitons for $y \rightarrow-\infty$ and n outgoing solitons for $y \rightarrow \infty$ (see [1]). In section 4, we describe the structure of the coefficient matrix A_{N} for each N-soliton solution by prescribing an explicit construction of the matrix A_{N}. We here define the N-soliton condition on the matrix A_{N} which determines local structures based on the types of 2 -soliton interaction in the N-soliton solution. Finally, in section 5 , we discuss N-soliton solutions of the KdV equation, and show that the KdV N-soliton solution cannot have resonant interactions.

2. Basic structure of the τ-function and 2 -soliton solutions

Let us start with the following lemma which shows the basic structure of the τ-function:
Lemma 2.1. The τ-function (1.1) with f_{j} given in (1.2) can be expanded as a sum of exponential functions,

$$
\tau=\sum_{1 \leqslant i_{1}<\cdots<i_{N} \leqslant M} \xi\left(i_{1}, \ldots, i_{N}\right) \prod_{1 \leqslant j<l \leqslant N}\left(k_{i_{j}}-k_{i_{l}}\right) \exp \left(\sum_{j=1}^{N} \theta_{i_{j}}\right),
$$

where $\xi\left(i_{1}, \ldots, i_{N}\right)$ is the $N \times N$ minor given by the i_{j} th columns with $j=1, \ldots, N$ in the matrix $A_{(N, M)}=\left(a_{i j}\right)$ of (1.2),

$$
\xi\left(i_{1}, \ldots, i_{N}\right):=\left|\begin{array}{ccc}
a_{1, i_{1}} & \cdots & a_{1, i_{N}} \\
\vdots & \ddots & \vdots \\
a_{N, i_{1}} & \cdots & a_{N, i_{N}}
\end{array}\right|
$$

Proof. Apply the Binet-Cauchy theorem for the expression (see, for example, [3]),

$$
\tau=\left|\left(\begin{array}{cccc}
E_{1}^{(0)} & E_{2}^{(0)} & \cdots & E_{M}^{(0)} \\
E_{1}^{(1)} & E_{2}^{(1)} & \cdots & E_{M}^{(1)} \\
\vdots & \vdots & \ddots & \vdots \\
E_{1}^{(N-1)} & E_{2}^{(N-1)} & \cdots & E_{M}^{(N-1)}
\end{array}\right)\left(\begin{array}{cccc}
a_{11} & a_{21} & \cdots & a_{N 1} \\
a_{12} & a_{22} & \cdots & a_{N 2} \\
\vdots & \vdots & \ddots & \vdots \\
\vdots & \vdots & \ddots & \vdots \\
a_{1 M} & a_{2 M} & \cdots & a_{N M}
\end{array}\right)\right|
$$

where $E_{j}^{(n)}=\left(-k_{j}\right)^{n} E_{j}$ with $E_{j}=\mathrm{e}^{\theta_{j}}$.

From this lemma, it is clear that if all the minors $\xi\left(i_{1}, \ldots, i_{N}\right)$ are non-negative (or nonpositive), then the τ-function is sign definite and the corresponding solution u is non-singular (recall also the order $k_{1}<\cdots<k_{M}$). This is the first restriction on the matrix $A_{(N, M)}$ for N-soliton solution, and we later impose that all the $N \times N$ minors are non-negative after making $A_{(N, M)}$ to be in the row reduced echelon form.

We now consider the case of N-soliton solutions, that is, we take $M=2 N$. With the ordering of the numbers k_{j}, i.e. $k_{1}<k_{2}<\cdots<k_{2 N}$, one can find the asymptotic behaviour of the τ-function for $x \rightarrow \pm \infty$: for this purpose, we first define the function w given by

$$
w(x, y, t)=-\frac{\partial}{\partial x} \log \tau(x, y, t)
$$

Suppose that w has the asymptotic form with some numbers $\left\{n_{1}^{ \pm}, \ldots, n_{N}^{ \pm}\right\} \subset\{1, \ldots, 2 N\}$,

$$
w \longrightarrow \begin{cases}\sum_{j=1}^{N} k_{n_{j}^{+}} & \text {as } \quad x \rightarrow \infty \tag{2.1}\\ \sum_{j=1}^{N} k_{n_{j}^{-}} & \text {as } \quad x \rightarrow-\infty\end{cases}
$$

It is clear that $n_{i}^{+} \neq n_{j}^{+}$and $n_{i}^{-} \neq n_{j}^{-}$if $i \neq j$. Then with the sets of N numbers $n_{j}^{ \pm}$in the asymptotics (2.1), we define the following two N-vectors with the entries from the set $\{1,2, \ldots, 2 N\}$:

Definition 2.1. A pair $\left(\mathbf{n}^{+}, \mathbf{n}^{-}\right)$of N-vectors are defined by

$$
\begin{cases}\mathbf{n}^{+}=\left(n_{1}^{+}, n_{2}^{+}, \ldots, n_{N}^{+}\right) & \text {with } 1=n_{1}^{+}<n_{2}^{+}<\cdots<n_{N}^{+}<2 N, \\ \mathbf{n}^{-}=\left(n_{1}^{-}, n_{2}^{-}, \ldots, n_{N}^{-}\right) & \text {with } \quad n_{j}^{-}>n_{j}^{+} .\end{cases}
$$

The ordering in the set \mathbf{n}^{+}is just a convenience, and once we make the ordering in \mathbf{n}^{+}, we do not assume a further ordering for the other set \mathbf{n}^{-}. We assume that those sets are complementary in the set $\{1,2, \ldots, 2 N\}$. As will be explained below, this assumption is necessary to have an N-soliton solution, that is, the solution has the same sets of N line solitons in both asymptotics $y \rightarrow \pm \infty$.

With those number sets \mathbf{n}^{+}and \mathbf{n}^{-}, one can define the pair of Young diagrams $\left(Y^{+}, Y^{-}\right)$:
Definition 2.2. We define a pair $\left(Y^{+}, Y^{-}\right)$associated with the pair $\left(\mathbf{n}^{+}, \mathbf{n}^{-}\right)$:

- The Y^{+}is a Young diagram represented by $\left(\ell_{1}^{+}, \ldots, \ell_{N}^{+}\right)$with $\ell_{j}^{+}=n_{j}^{+}-j$ where each ℓ_{j}^{+} represents the number of boxes in a row counting from the bottom (note $\ell_{j}^{+} \leqslant \ell_{j+1}^{+}$).
- The Y^{-}is a Young diagram associated with $\left(\ell_{1}^{-}, \ldots, \ell_{N}^{-}\right)$, where ℓ_{j}^{-}is defined as the number of reverses in the sequence $\left(n_{1}^{-}, \ldots, n_{N}^{-}\right)$for each n_{j}^{-}, i.e.

$$
\ell_{j}^{-}=\mid\left\{n_{k}^{-} \mid n_{k}^{-}<n_{j}^{-} \text {for } k>j\right\} \mid .
$$

Here $|\{S\}|$ implies the number of elements in the set $\{S\}$. Then ℓ_{j}^{-}represents the number of boxes in a row arranged in the increasing order from the bottom.

Note that the Young diagram Y^{+}is uniquely determined from \mathbf{n}^{+}, but the diagram Y^{-}is not unique (note that $\left(\ell_{1}^{-}, \ldots, \ell_{N}^{-}\right)$is unique of course). However, the number of boxes in Y^{-}gives the number of intersection vertices of N -soliton solution having a particular type of interaction (theorem 4.3).

As a main goal of this paper, we will show in section 4 that for each pair ($\mathbf{n}^{+}, \mathbf{n}^{-}$) one can construct an N-soliton solution consisting of N line solitons, each of which is given by $\left[n_{j}^{+}, n_{j}^{-}\right]$-soliton for $j=1, \ldots, N$. The total number of different N-soliton solutions is given by $(2 N-1)$!! which is the number of different sets of pairs $\left\{\left(\mathbf{n}^{+}, \mathbf{n}^{-}\right)\right\}$. Namely, we construct an N -soliton solution which is labelled by $\left(\mathbf{n}^{+}, \mathbf{n}^{-}\right)$as follows:
(1) Consider a set of $2 N$ numbers $\{1, \ldots, 2 N\}$, which are associated with the parameters $k_{1}<\cdots<k_{2 N}$.
(2) Choose N different pairs from $\{1, \ldots, 2 N\}$, and label each pair as $\left[n_{j}^{+}, n_{j}^{-}\right]$so that the numbers $n_{j}^{ \pm}$satisfy
(i) $n_{j}^{+}<n_{j}^{-}$for $j=1, \ldots, N$;
(ii) $1=n_{1}^{+}<n_{2}^{+}<\cdots<n_{N}^{+}$.
(3) Define the pair $\left(\mathbf{n}^{+}, \mathbf{n}^{-}\right)$with $\mathbf{n}^{ \pm}=\left(n_{1}^{ \pm}, \ldots, n_{N}^{ \pm}\right)$, and construct the corresponding matrix $A_{N}=A_{(N, 2 N)}$.
Note here that the labelling is unique with a given choice of pairs, and the corresponding N-soliton solution consists of $\left[n_{j}^{+}, n_{j}^{-}\right]$-solitons for $j=1, \ldots, N$. Item (3) will be given in section 4.

In order to classify those N-soliton solutions, we first note
Lemma 2.2. For each given ordered set \mathbf{n}^{+}, the number of choices of \mathbf{n}^{-}is given by

$$
m_{\mathbf{n}^{+}}=\prod_{j=1}^{N}\left(2 j-n_{j}^{+}\right)
$$

Proof. Since $n_{N}^{-}>n_{N}^{+}$, there are $\left(2 N-n_{N}^{+}\right)$numbers of possible choices of n_{N}^{-}. Having made a choice of n_{N}^{-}, one has $2(N-1)-n_{N-1}^{+}$many choices for n_{N-1}^{-}. Now repeating this, the result is obvious.

This lemma provides the number of different N-soliton solutions having the same \mathbf{n}^{+}, that is, the functions $w=-(\partial / \partial x) \log \tau$ for those solutions have the same asymptotic values for $x \rightarrow \pm \infty$. As a corollary of this lemma, we also have the following identity:

$$
(2 N-1)!!=\sum_{\mathbf{n}^{+}} m_{\mathbf{n}^{+}}
$$

We also have the following lemma for the ordered set \mathbf{n}^{+}:
Lemma 2.3. Each number n_{j}^{+}in the \mathbf{n}^{+}is limited as

$$
n_{j}^{+} \leqslant 2 j-1 \quad \text { for } \quad j=1, \ldots, N .
$$

Proof. Since $n_{j}^{+}<n_{j}^{-}$, there are $N-j$ numbers of n_{k}^{+}and $N-j+1$ of n_{k}^{-}, which are larger than n_{j}^{+}, that is, we have

$$
(N-j)+(N-j+1) \leqslant 2 N-n_{j}^{+} .
$$

This implies the lemma.
In terms of the Young diagram Y^{+}, we have
Corollary 2.1. The maximum diagram for Y^{+}, denoted as $Y_{\max }$, is the Young diagram associated with $\mathbf{n}^{+}=(1,3, \ldots, 2 N-1)$, that is, $Y_{\max }$ is the upside down staircase with the size

$$
\left|Y_{\max }\right|=\frac{N(N-1)}{2}
$$

The maximum Young diagram for Y^{-}is also given by $Y_{\max }$, which now corresponds to the case $\mathbf{n}^{-}=(2 N, 2 N-1, \ldots, N+1)$. Then the Young diagrams $Y^{ \pm}$associated with N-soliton solutions are given by a subdiagram of $Y_{\max }$.

Figure 1. An N-soliton solution. The label $\left[n_{j}^{+}, n_{j}^{-}\right]$indicates the $\left[n_{j}^{+}, n_{j}^{-}\right]$-soliton. Here the soliton velocities $c_{j}:=k_{n_{j}^{+}}+k_{n_{j}^{-}}$are assumed to be ordered as $c_{j+1}>c_{j}$. Each asymptotic region is marked by the value of the function w there, i.e. $\left(i_{1}, \ldots, i_{N}\right)$ implies $w=\sum_{j=1}^{N} k_{i_{j}}$.

Note that $\left|Y_{\max }\right|$ is also the number of intersection vertices of N lines in a plane in the general position. We will then determine whether each point is of resonant or non-resonant type.

In figure 1, we illustrate the asymptotic stage of an N-soliton solution with N solitons marked by $\left[n_{j}^{+}, n_{j}^{-}\right]$for $j=1, \ldots, N$. We note a duality of the values of w in the sense that if w takes $\sum_{j=1}^{N} k_{i_{j}}$, denoted as $\left(i_{1}, \ldots, i_{N}\right)$ in the figure, then w also takes $\left(j_{1}, \ldots, j_{N}\right)$ which is the complementary set of $\left(i_{1}, \ldots, i_{N}\right)$ in $\{1, \ldots, 2 N\}$. In terms of the minors, this implies that if $\xi\left(i_{1}, \ldots, i_{N}\right) \neq 0$ then $\xi\left(j_{1}, \ldots, j_{N}\right) \neq 0$. The duality can be considered as a geometric symmetry of the N-soliton solution: in particular, if $\theta_{j}^{0}=0$ for all j, then N-soliton solution has the symmetry $(x, y, t) \leftrightarrow(-x,-y,-t)$. In this case, at $t=0$ all the solitons intersect at the origin in the $x-y$ plane (see figure 4). Then each soliton can be moved by shifting θ_{j}^{0}. A duality in the interaction region can be seen in figure 2 where two figures $((A)$ and (B)) of 3 -soliton solution are illustrated. Note the duality in the middle region which implies $\xi\left(n_{1}^{-}, n_{2}^{+}, n_{3}^{-}\right) \neq 0$ and $\xi\left(n_{1}^{+}, n_{2}^{-}, n_{3}^{+}\right) \neq 0$. With this symmetry, we define the duality of the τ-function:

Definition 2.3. We state that the τ-function in lemma 2.1 with $M=2 N$ satisfies the duality, if for any complementary sets $\left\{i_{1}, \ldots, i_{N}\right\}$ and $\left\{j_{1}, \ldots, j_{N}\right\}$, the minors satisfy

$$
\xi\left(i_{1}, \ldots, i_{N}\right)=0 \quad \text { if and only if } \quad \xi\left(j_{1}, \ldots, j_{N}\right)=0
$$

Before we discuss the general case with arbitrary N, we list up all possible 2-soliton solutions, and show that the τ-functions for those cases all satisfy the duality. As will be shown below, those solutions give the building blocks of N-soliton solutions. There are three cases of the solutions (see also [6]), which are labelled by the pair ($\left.\mathbf{n}^{+}, \mathbf{n}^{-}\right)$with $\mathbf{n}^{ \pm}=\left(n_{1}^{ \pm}, n_{2}^{ \pm}\right)$. Two line solitons are labelled by $\left[n_{1}^{+}, n_{1}^{-}\right]$and $\left[n_{2}^{+}, n_{2}^{-}\right]$:

Figure 2. A duality in two equivalent 3 -soliton solutions. The values of the function $w(x, y, t)$ in the middle region are expressed as $\left(n_{1}^{ \pm}, n_{2}^{\mp}, n_{3}^{ \pm}\right)$showing the duality of the τ-function.
(i) $\mathbf{n}^{+}=(1,3)$ and $\mathbf{n}^{-}=(2,4)$. This corresponds to the ordinary 2 -soliton solution, and the matrix A_{2} which we denote as $A_{2}^{(O)}$, takes the form (after choosing θ_{j}^{0} properly),

$$
A_{2}^{(O)}=\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1
\end{array}\right)
$$

which gives only four nonzero minors, $\xi(1,3), \xi(1,4), \xi(2,3)$ and $\xi(2,4)$. This shows the duality, i.e. $\xi(1,2)=\xi(3,4)=0$. Those nonzero minors then label the four asymptotic regions separated by two line solitons: denoting $(i, j):=k_{i}+k_{j}, w$ takes $(1,3)$ as $x \rightarrow \infty$ which is dual to $(2,4)$ as $x \rightarrow-\infty$. Also w takes $(1,4)$ as $y \rightarrow \infty$, which is dual to $(2,3)$ as $y \rightarrow-\infty$. This also implies that there is no other transition of the w value, hence the interaction is not of resonant type.

The Young diagram Y^{+}in this case is the maximum one, i.e. $Y^{+}=\square$. The diagram Y^{-}has no box, $Y^{-}=\emptyset$. The interaction of O-type is thus labelled by the Young diagram Y^{+}. It is also useful to note that the intervals defined by the labels [1, 2] and [3, 4] of solitons have no overlaps. Non-overlapping property can be stated as $\xi(1,2)=0$ and its dual one $\xi(3,4)=0$ (see also the examples in the end of section 4).
(ii) $\mathbf{n}^{+}=(1,2)$ and $\mathbf{n}^{-}=(3,4)$. This case corresponds to the 2 -soliton solution of the Toda lattice [1], and the matrix A_{2}, denoted as $A_{2}^{(T)}$, has the structure

$$
A_{2}^{(T)}=\left(\begin{array}{llll}
1 & 0 & - & - \\
0 & 1 & + & +
\end{array}\right),
$$

where ' + , -' shows the signs of the entries (also nonzero). An explicit example of $A_{2}^{(T)}$ is

$$
A_{2}^{(T)}=\left(\begin{array}{cccc}
1 & 0 & -1 & -2 \\
0 & 1 & 1 & 1
\end{array}\right)
$$

and the corresponding 2-soliton solution is illustrated as T-type in figure 3 . Following the arguments in [1], one can easily show that two solitons are given by [1, 3]- and [2, 4]solitons, and the interaction is in resonance. The main point in this example is that all the 2×2 minors of $A_{2}^{(T)}$ are nonzero, and this results in resonance interaction. The nonvanishing condition of all the minors is necessary to make the resonant interaction, and

Figure 3. 2-soliton solutions. Two line solitons in those figures are [1, 2]- and [3, 4]-solitons for O-type, [1, 3]- and [2, 4]-solitons for T-type, and [1, 4]- and [2, 3]-solitons for P-type. The parameters are chosen as $\left(k_{1}, k_{2}, k_{3}, k_{4}\right)=(-2,0,1,2)$ and $\theta_{j}^{0}=0, \forall j$ for all types.
those minors describe the intermediate solitons which form a Y-shape resonant interaction (see [1] for more detail).

Again we note the duality in the values of w in the asymptotics: w takes $(3,4)$ for $x \rightarrow-\infty$ which is dual to $(1,2)$ for $x \rightarrow \infty$. Also w takes $(1,4)$ for $y \rightarrow \infty$, which is dual to $(2,3)$ for $y \rightarrow-\infty$. One more duality appears in the inside of the resonant hole, that is, w takes $(1,3)$ for $t>0$, which is dual to $(2,4)$ for $t<0$ (or vice versa). Thus all six nonzero minors contribute to make the resonant interaction. The pair $\left(Y^{+}, Y^{-}\right)$of the Young diagrams is then given by (\emptyset, \emptyset). Also note that the intervals defined by the labels of solitons, [1,3] and [2, 4], have a partial overlap.
(iii) $\mathbf{n}^{+}=(1,2)$ and $\mathbf{n}^{-}=(4,3)$. This case has been noted in [6], and the corresponding matrix A_{2}, denoted as $A_{2}^{(P)}$ (P stands for physical, see remark 2.4), is given by (after choosing θ_{j}^{0} properly)

$$
A_{2}^{(P)}=\left(\begin{array}{cccc}
1 & 0 & 0 & -1 \\
0 & 1 & 1 & 0
\end{array}\right),
$$

which gives again only four nonzero minors with $\xi(1,2), \xi(1,3), \xi(2,4)$ and $\xi(3,4)$. This also implies no resonance, and the solitons are given by [1, 4]- and [2, 3]-solitons. This solution is similar to the O-type, but the pair of the Young diagrams is different, and given by (\emptyset, \square). The interaction of this type is labelled by the Young diagram Y^{-}. Also the intervals defined by the labels of solitons, [1, 4] and [2, 3], have complete overlap, i.e. the interval $(2,3)$ is in $(1,4)$. This implies $\xi(2,3)=0$ and its dual $\xi(1,4)=0$.

One should note that we have the following order in the soliton velocities $c_{i j}:=k_{i}+k_{j}$ among those solitons for given constants k_{j} with the order $k_{1}<k_{2}<k_{3}<k_{4}$,

$$
c_{12}<c_{13}<c_{14}, c_{23}<c_{24}<c_{34}
$$

Here note that c_{14} and c_{23} cannot have a definite order (even $c_{14}=c_{23}$ is possible). This ordering indicates that any 2 -soliton solution can be classified as one of those three solitons. One should note here that the type for a given pair of solitons is completely determined by their labels $\left[n_{j}^{+}, n_{j}^{-}\right]$for $j=1,2$. Namely, the interaction pattern is completely determined by their asymptotics in $y \rightarrow \infty$, where two solitons are labelled.

Although the interaction patterns of the cases of O-type in (ii) and P-type in (iii) are the same, i.e. non-resonant, they describe orbits on different cells in terms of the Schubert
decomposition of the Grassmannian, in which each cell is parametrized by a Young diagram. We will give more details of this description in section 3.

Remark 2.4. In [7], the KP equation was introduced to describe a transversal stability of the KdV soliton propagating along the x-axis. Then the order of the wavenumber in the y-direction is assumed to be much smaller than that in the x-direction. This implies that the wave described by the KP equation should be almost parallel to the y-axis for a better approximation within the physical setting. In this sense, the P-type solitons are more physical than other two types. The KdV two solitons are also obtained from the P-type solitons with $k_{1}<k_{2}<0$ and $k_{3}=-k_{2}, k_{4}=-k_{1}$ (see section 5).

3. Grassmannian $\operatorname{Gr}(N, 2 N)$ and N-soliton solutions

Here we briefly summarize the basics of the Grassmann manifold $\operatorname{Gr}(N, M)$ in order to explain that the minors $\xi\left(i_{1}, \ldots, i_{N}\right)$ in lemma 2.1 provide a coordinate system for $\operatorname{Gr}(N, M)$, the Plücker coordinates. Namely a solution given by the τ-function (1.1) can be marked by a point on $\operatorname{Gr}(N, M)$. The purpose of this section is to identify an N-soliton solution as a $2 N$-dimensional torus orbit of a point on $\operatorname{Gr}(N, 2 N)$ marked by the minors $\xi\left(i_{1}, \ldots, i_{N}\right)$. Then using the Schubert decomposition of the Grassmannian $\operatorname{Gr}(N, 2 N)$, we classify the orbits which represent the N-soliton solutions.

3.1. Grassmannian $\operatorname{Gr}(N, M)$

A real Grassmannian $\operatorname{Gr}(N, M)$ is the set of N-dimensional subspaces of \mathbb{R}^{M}. A point ξ of the Grassmannian is expressed by the N-frame of vectors,

$$
\xi=\left[\xi_{1}, \xi_{2}, \ldots, \xi_{N}\right], \quad \text { with } \quad \xi_{i}=\sum_{j=1}^{M} a_{i j} e_{j} \in \mathbb{R}^{M}
$$

where $\left\{e_{i} \mid i=1,2, \ldots, M\right\}$ is the standard basis of \mathbb{R}^{M}, and $\left(a_{i j}\right)=A_{(N, M)}$ is the $N \times M$ matrix given in (1.2). Then the Grassmannian $\operatorname{Gr}(N, M)$ can be embedded into the projectivization of the exterior space $\bigwedge^{N} \mathbb{R}^{M}$, which is called the Plücker embedding,

$$
\begin{aligned}
\operatorname{Gr}(N, M) & \hookrightarrow \mathbb{P}\left(\bigwedge^{N} \mathbb{R}^{M}\right) \\
\xi=\left[\xi_{1}, \ldots, \xi_{N}\right] & \mapsto \xi_{1} \wedge \cdots \wedge \xi_{N}
\end{aligned}
$$

Here the element on $\mathbb{P}\left(\bigwedge^{N} \mathbb{R}^{M}\right)$ is expressed as

$$
\xi_{1} \wedge \cdots \wedge \xi_{N}=\sum_{1 \leqslant i_{1}<\cdots<i_{N} \leqslant M} \xi\left(i_{1}, \ldots, i_{N}\right) e_{i_{1}} \wedge \cdots \wedge e_{i_{N}}
$$

where the coefficients $\xi\left(i_{1}, \ldots, i_{N}\right)$ are $N \times N$ minors given in lemma 2.1, which are called the Plücker coordinates.

It is also well known that the Grassmannian can have the cellular decomposition, called the Schubert decomposition [4],

$$
\begin{equation*}
\operatorname{Gr}(N, M)=\bigsqcup_{1 \leqslant i_{1}<\cdots<i_{N} \leqslant M} W\left(i_{1}, \ldots, i_{N}\right) \tag{3.1}
\end{equation*}
$$

where the cells are defined by

$$
W\left(i_{1}, \ldots, i_{N}\right)=\{\xi=\left(\begin{array}{ccccc}
0 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 0 \\
1 & 0 & 0 & \cdots & 0 \\
* & 0 & 0 & \cdots & 0 \\
0 & 1 & 0 & \cdots & 0 \\
* & * & \cdots & \cdots & 0 \\
0 & 0 & 0 & \cdots & 1 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
* & * & * & \cdots & *
\end{array}\right) \in \overbrace{\mathbb{R}^{M} \times \cdots \times \mathbb{R}^{M}}^{N} \underbrace{N}\}
$$

$$
\begin{aligned}
= & \left\{\text { the matrix } \xi=A_{(N, M)}^{T}\right. \text { in the echelon form } \\
& \text { whose pivot ones are at } \left.\left(i_{1}, \ldots, i_{N}\right) \text { positions }\right\}
\end{aligned}
$$

Namely, an element $\xi=\left[\xi_{1}, \ldots, \xi_{N}\right] \in W\left(i_{1}, \ldots, i_{N}\right)$ is described by

$$
\xi \in W\left(i_{1}, \ldots, i_{N}\right) \Leftrightarrow\left\{\begin{array}{l}
\text { (i) } \quad \xi\left(i_{1}, \ldots, i_{N}\right) \neq 0 \\
\text { (ii) } \xi\left(j_{1}, \ldots, j_{N}\right)=0
\end{array} \text { if } j_{n}<i_{n} \text { for some } n\right.
$$

Each cell $W\left(i_{1}, \ldots, i_{N}\right)$ is called the Schubert cell, and it is convenient to label the cell by the Young diagram $Y=\left(i_{1}, \ldots, i_{k}\right)$ where the number of boxes is given by $\ell_{j}=i_{j}-j$ for $j=1, \ldots, N$ (counted from the bottom), which also expresses a partition $\left(\ell_{N}, \ell_{N-1}, \ldots, \ell_{1}\right)$ of the number $|Y|:=\sum_{i=1}^{N} \ell_{i}$, the size of Y. The codimension of the cell $W\left(i_{1}, \ldots, i_{N}\right)$ is then given by the size of Y, i.e.,

$$
\operatorname{codim} W\left(i_{1}, \ldots, i_{N}\right)=|Y|=\left(i_{1}+\cdots+i_{N}\right)-\frac{1}{2} N(N+1)
$$

and the dimension is given by the number of free variables in the echelon form. Note that the top cell of $\operatorname{Gr}(N, M)$ is labelled by $Y=(1, \ldots, N)$, i.e. $|Y|=0$, and

$$
\operatorname{dim} W(1, \ldots, N)=\operatorname{dim} \operatorname{Gr}(N, M)=N \times(M-N)
$$

The main point here is that each matrix $A_{(N, M)}$ in (1.2) can be identified as a point on a Schubert cell of the Grassmannian. Now we identify an N-soliton solution as a torus orbit of a point on the Grassmannian $\operatorname{Gr}(N, 2 N)$, and show that orbits in the different cells give different types of N-soliton solutions.

3.2. N -soliton solution as a 2 N -dimensional torus orbit

First we note that the τ-function (1.1) in the Wronskian form can be expressed as

$$
\begin{equation*}
\tau(x, y, t)=\left\langle v^{N}, K D(x, y, t) A^{t} \cdot v^{N}\right\rangle \tag{3.2}
\end{equation*}
$$

where v^{N} is the highest weight vector in a fundamental representation of $\operatorname{GL}(2 N)$ which is given by the element of $\bigwedge^{N} \mathbb{R}^{2 N}$,

$$
v^{N}=e_{1} \wedge e_{2} \wedge \cdots \wedge e_{N}
$$

and K, A (A^{t} represents the transpose of A) are $2 N \times 2 N$ constant matrices defined by

$$
\left\{\begin{array}{l}
K=\left(k_{i j}\right)_{1 \leqslant i, j \leqslant 2 N}, \quad \text { with } \quad k_{i j}:=\left(-k_{j}\right)^{i-1} \\
A=\left(a_{i j}\right)_{1 \leqslant i, j \leqslant 2 N} .
\end{array}\right.
$$

The $D(x, y, t)$ is $2 N \times 2 N$ diagonal matrix associated with an $\left(\mathbb{R}^{*}\right)^{2 N}$-torus action,

$$
D(x, y, t)=\operatorname{diag}\left(\mathrm{e}^{\theta_{1}}, \ldots, \mathrm{e}^{\theta_{2 N}}\right) \quad \text { with } \quad \theta_{j}=-k_{j} x+k_{j}^{2} y-k_{j}^{3} t+\theta_{j}^{0}
$$

Note here that $A^{t} \cdot v^{N}$ defines the matrix $A_{N}=A_{(N, 2 N)}$ in (1.2), that is,

$$
A^{t} \cdot e_{1} \wedge \cdots \wedge e_{N}=A^{t} e_{1} \wedge A^{t} e_{2} \wedge \cdots \wedge A^{t} e_{N}
$$

which can be identified as A_{N}^{t}. The inner product $\langle\cdot, \cdot\rangle$ on $\bigwedge^{N} \mathbb{R}^{2 N}$ is defined by

$$
\left\langle v_{1} \wedge \cdots \wedge v_{j}, w_{1} \wedge \cdots \wedge w_{j}\right\rangle=\operatorname{det}\left[\left(\left\langle v_{m}, w_{n}\right\rangle\right)_{1 \leqslant m, n \leqslant j}\right]
$$

where $\left\langle v_{m}, w_{n}\right\rangle$ is the standard inner product of $v_{m}, w_{n} \in \mathbb{R}^{2 N}$.
The expression (3.2) implies that the solution $u(x, y, t)$ given by the τ-function (1.1) is a $2 N$-dimensional torus orbit, $\left(\mathbb{R}^{*}\right)^{2 N}$-orbit, of a point on $\operatorname{Gr}(N, 2 N)$ marked by A_{N}. Note also that the Schubert cell $W\left(i_{1}, \ldots, i_{N}\right)$ is invariant under this torus action. The orbits, N-soliton solutions, can be first classified in terms of the Schubert decomposition with the index sets $\left(i_{1}, \ldots, i_{N}\right)$.

Example 3.1 $\operatorname{Gr}(2,4)$. The Schubert decomposition of $\operatorname{Gr}(2,4)$ is given by

$$
\operatorname{Gr}(2,4)=\bigsqcup_{1 \leqslant i, j \leqslant 4} W(i, j) .
$$

There are six cells $W(i, j)$ with $\operatorname{dim} W(i, j)=7-(i+j)$. (Note $7=N(M-N)+N(N+1) / 2$ with $N=2, M=4$.)
(i) $W(1,2)$. This is a top cell of maximum dimension 4 , and a point on the cell is given by

$$
A_{2}=\left(\begin{array}{llll}
1 & 0 & * & * \\
0 & 1 & * & *
\end{array}\right)
$$

which includes 2-soliton solutions of T-type, $A_{2}^{(T)}$, and P-type, $A_{2}^{(P)}$.
(ii) $W(1,3)$. A point on this cell is marked by

$$
A_{2}=\left(\begin{array}{llll}
1 & * & 0 & * \\
0 & 0 & 1 & *
\end{array}\right)
$$

The 2-soliton solution of O-type with $A_{2}^{(O)}$ belongs to this cell. Thus O-type and P-type belong to different cells, even though they show non-resonant interactions.
(iii) $W(1,4)$. The A_{2} matrix has the form

$$
A_{2}=\left(\begin{array}{llll}
1 & * & * & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

In this case, nonzero minors are given by $\xi(i, 4)$ for $i=1,2,3$. This implies that the exponential term $E_{4}=\mathrm{e}^{\theta_{4}}$ becomes a common factor in the τ-function. Then the solution gives $(2,1)$-soliton solution, that is, two incoming solitons and one outgoing soliton in the asymptotics $y \rightarrow \pm \infty$ (see [1]).
(iv) $W(2,3)$. The A_{2} matrix is given by

$$
A_{2}=\left(\begin{array}{llll}
0 & 1 & 0 & * \\
0 & 0 & 1 & *
\end{array}\right) .
$$

Then the exponential term $E_{1}=\mathrm{e}^{\theta_{1}}$ is missing in the τ-function, and the solution describes a (1,2)-soliton solution.
(v) $W(2,4)$. The A_{2} matrix is

$$
A_{2}=\left(\begin{array}{llll}
0 & 1 & * & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

The solution is a 1 -soliton solution of [2,3]-soliton.
(vi) $W(3,4)$. The A_{2} matrix is

$$
A_{2}=\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

The τ-function is just a product of $E_{3}=\mathrm{e}^{\theta_{3}}$ and $E_{4}=\mathrm{e}^{\theta_{4}}$, and the solution is trivial, $u=0$.

Remark 3.2. Since $W(1,3)$ is a boundary of the top cell $W(1,2)$, a point on $W(1,3)$ can be obtained by a limit of a sequence of points in $W(1,2)$. For example, consider the following matrix (representing one-parameter family of points in $W(1,2)$),

$$
A_{2}(\epsilon)=\left(\begin{array}{cccc}
1 & 0 & -\epsilon^{-1} & -\epsilon^{-1} \\
0 & 1 & \epsilon^{-1}+\epsilon & \epsilon^{-1}-\epsilon
\end{array}\right)
$$

where the parameter ϵ is a positive number. If $\epsilon<1$, then the matrix gives a 2 -soliton solution of T-type (note that all the minors are positive). Then in the limit $\epsilon \rightarrow 0$, the matrix can be interpreted as the O-type matrix $A_{2}^{(O)}$ in $W(1,3)$ (recall here that $\epsilon^{-1} \tau \equiv \tau$ is the Plücker coordinate, i.e. they both give the same solution). It is also obvious that $A_{2}^{(P)}$ is obtained by a limit of the T-type matrix. Thus T-type is generic, while the O-type and P-type are nongeneric. Also in the Gallipoli conference in June-July 2004, Pashaev showed that a 2 -soliton solution of T-type is a degenerate case of 4-soliton solution of non-resonant type (obtained by the Hirota method) [8].

Since N-soliton solution is an orbit on a particular Schubert cell $W\left(i_{1}, \ldots, i_{N}\right)$ which is a boundary of the top cell $W(1, \ldots, N)$, it seems to be true that all the N-soliton solutions are obtained by the limits of the τ-function of T-type which lives on the top cell. We will discuss more details in a future communication.

4. Construction of the A_{N} matrix

In this section, we give an explicit construction of the matrix A_{N} for N-soliton solution parametrized by the pair $\left(\mathbf{n}^{+}, \mathbf{n}^{-}\right)$: the key idea of the construction is based on the classification of 2-soliton solutions, that is, a local structure of the matrix contains one of those types, O-, T- or P-type. With a given pair ($\mathbf{n}^{+}, \mathbf{n}^{-}$), we construct an N-soliton solution consisting of N line solitons with the labels $\left[n_{j}^{+}, n_{j}^{-}\right]$for $j=1, \ldots, N$. In order to do this, let us first define
Definition 4.1. The length of $\left[n_{j}^{+}, n_{j}^{-}\right]$-soliton, denoted by L_{j}, is defined by

$$
L_{j}:=\min \left\{n_{j}^{-}-n_{j}^{+}, 2 N-n_{j}^{-}+n_{j}^{+}\right\} .
$$

Note that $1 \leqslant L_{j} \leqslant N$ for all $j=1, \ldots, N$.
In the cases of 2-soliton solutions, we have
(i) for O-type, $L_{1}=L_{2}=1$;
(ii) for T-type, $L_{1}=L_{2}=2$;
(iii) for P-type, $L_{1}=L_{2}=1$.

Then we note that the length of the line soliton gives the condition on the minors. In those cases, $\xi\left(n_{j}^{+}, n_{j}^{-}\right)=0$ if and only if $L_{j}<2$.

For N-soliton solutions with $\left[n_{j}^{+}, n_{j}^{-}\right]$-solitons, we impose that the τ-functions satisfy the following condition which plays a crucial role for the construction of A_{N} :

Definition 4.2. We say that a τ-function satisfies the N-soliton condition, if it satisfies the duality (definition 2.3) and has missing exponential terms (i.e. vanishing minors) if and only if there exists a $\left[n_{j}^{+} n_{j}^{-}\right]$-soliton whose length is less than N. If $L_{j}<N$ for some j, we require that

- for $L_{j}=n_{j}^{-}-n_{j}^{+}$, then the $N \times N$ minors satisfy

$$
\xi\left(\ldots,\left[n_{j}^{+}, n_{j}^{+}+1, \ldots, n_{j}^{-}\right], \ldots\right)=0
$$

- for $L_{j}=2 N-n_{j}^{-}+n_{j}^{+}$, then

$$
\xi\left(\left[1, \ldots, n_{j}^{+}\right], \ldots,\left[n_{j}^{-}, \ldots, 2 N\right]\right)=0 .
$$

Here the $L_{j}+1$ entries inside the brackets $[\cdots]$ are consecutive numbers, and the other entries in the '...' outside the $[\cdots]$ can take any numbers.

Recall that in the case of N-soliton solutions for the Toda lattice, every soliton has the length N, and there is no vanishing minor [1]. The N-soliton condition is a natural extension of that in the case of 2-soliton solutions, and it provides local information of 2-soliton interactions in an N-soliton solution which are classified into three types, O, T and P . Note in particular, with this condition, that one identifies all the vanishing minors in the τ-function.

Let us now construct the matrix A_{N} : the construction has several steps, and it might be better to explain the steps using an explicit example.

Let us consider the case $N=4$ with $\mathbf{n}^{+}=(1,2,4,5)$ and $\mathbf{n}^{-}=(3,7,6,8)$:
Step I. Since the minors $\xi(1,2,4,5) \neq 0$ and $\xi(3,6,7,8) \neq 0$, one can easily see that A_{N} matrix has the structure

$$
\left(\begin{array}{llllllll}
* & * & * & 0 & 0 & 0 & 0 & 0 \tag{4.1}\\
0 & * & * & * & * & * & * & * \\
0 & 0 & 0 & * & * & * & * & * \\
0 & 0 & 0 & 0 & * & * & * & *
\end{array}\right),
$$

where '*' marks a possible nonzero entry, and in particular, the first element in each row should be nonzero (this is the pivot place). Note here that $\xi(1,2,3, j)=0$ for any j, which is also considered as the 4 -soliton condition with the length $L_{1}=2$ of the [1,3]-soliton. Note that $\xi\left(i_{1}, i_{2}, i_{3}, i_{4}\right)=0$ for any $4 \leqslant i_{1}, \ldots, i_{4} \leqslant 8$ are dual to $\xi(1,2,3, j)=0$ for some j.

Step II. In this step, we put the form (4.1) into the RREF. First we normalize the first nonzero entries to be 1 in every row, and eliminate the (2,4)-entry from the third row and the $(3,5)$-entry from the fourth row. Note that this process does not affect the 0 s of the matrix in (4.1). Then we have

$$
\left(\begin{array}{llllllll}
1 & * & * & 0 & 0 & 0 & 0 & 0 \tag{4.2}\\
0 & 1 & * & 0 & 0 & * & * & * \\
0 & 0 & 0 & 1 & 0 & * & * & * \\
0 & 0 & 0 & 0 & 1 & * & * & *
\end{array}\right)
$$

Further eliminating ' $*$ ' in the second column by row reduction using the 2 nd row, we have

$$
\left(\begin{array}{llllllll}
1 & 0 & * & 0 & 0 & \# & \# & \# \tag{4.3}\\
0 & 1 & * & 0 & 0 & \# & \# & \# \\
0 & 0 & 0 & 1 & 0 & * & * & * \\
0 & 0 & 0 & 0 & 1 & * & * & *
\end{array}\right)
$$

where the two rows in the 2×3 submatrix with \# entries are parallel (recall $\xi(5,6,7,8)=$ $\xi(4,6,7,8)=0)$. Also note that the signs of nonzero entries are uniquely determined by the requirement of all the minors to be non-negative; for example, the last three entries in the first row are non-positive, and the signs of the last three entries of the following rows change alternatively. Up to this point, we have not used the order in \mathbf{n}^{-}. In another words, the form of the matrix in (4.3) is common for any \mathbf{n}^{-}with a given \mathbf{n}^{+}.

Step III. Now we use the orders in \mathbf{n}^{-}to determine explicit entries in the matrix for a 4-soliton solution consisting of four line solitons labelled by $\left[n_{j}^{+}, n_{j}^{-}\right]$, i.e. $[1,3],[2,7],[4,6],[5,8]$. In this step, we identify all other zero elements (i.e. zero minors) of the matrix A_{N} using the N-soliton condition (definition 4.2). The following graph shows the overlapping relations among those solitons and the length of each soliton:

$$
\begin{array}{rrrrrrrr}
\circ & - & \bullet & & & & & : \\
& \circ & - & - & - & - & \bullet & : \\
& & L_{1}=2 \tag{4.4}\\
& & - & \bullet & & : & L_{2}=3 \\
& & \circ & - & - & \bullet & : L_{4}=3
\end{array}
$$

Now we use the 4 -soliton condition. First we note that from $L_{1}=2<4$ we have $\xi(1,2,3, j)=0$ for any j (see step I). Also from $L_{3}=2$, we have $\xi(4,5,6, j)=0$ for any j. In particular, $\xi(1,4,5,6)=0$ implies that $(2,6)$-entry must be zero, so that $(1,6)$ entry is also zero. Also $\xi(3,4,5,6)=0$ gives $\xi(1,2,7,8)=0$ which is also the 4 -soliton condition with $L_{2}=3$. The $\xi(1,2,7,8)=0$ implies that the 2×2 determinant of the right bottom corner must be zero. We then get the following structure,

$$
\left(\begin{array}{llllllll}
1 & 0 & * & 0 & 0 & 0 & \# & \# \\
0 & 1 & * & 0 & 0 & 0 & \# & \# \\
0 & 0 & 0 & 1 & 0 & * & \times & \times \\
0 & 0 & 0 & 0 & 1 & * & \times & \times
\end{array}\right)
$$

where the 2×2 minor with the \times entries is zero. Also from the partial overlaps (i.e. T-type interaction) in $[1,3]$ with $[2,7]$, in $[2,7]$ with $[5,8]$ and in $[4,6]$ with $[5,8]$, we need nonzero entries for those marked by $*$, \# and \times. Then one can easily find an explicit example of the matrix A_{4} whose 4×4 minors are all non-negative,

$$
\left(\begin{array}{cccccccc}
1 & 0 & -2 & 0 & 0 & 0 & -3 & -9 \\
0 & 1 & 1 & 0 & 0 & 0 & 1 & 3 \\
0 & 0 & 0 & 1 & 0 & -1 & -2 & -2 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right)
$$

In figure 4, we illustrate a 4 -soliton solution generated with this matrix. Note that there are three resonant vertices corresponding to the interactions between [1,3] and [2, 7], [2, 7] and $[5,8]$, and $[4,6]$ and $[5,8]$ (see the overlapping graph in (4.4)). Other three vertices are two of O-type and one P-type.

Figure 4. 4-soliton solutions labelled by $\mathbf{n}^{+}=(1,2,4,6)$ and $\mathbf{n}^{-}=(3,7,6,8)$. The left figure shows the 4 -soliton solution at $t=0$ and the right one at $t=10$. The parameters are given by $\theta_{j}^{0}=0$ for all $j=1, \ldots, 8$, and $\left(k_{1}, \ldots, k_{8}\right)=(-3 / 2,-1,-1 / 2,0,1 / 2,1,3 / 2,2)$. The solution at $t=-10$ can be obtained by the reflection $(-x,-y)$ of the right graph.

One can show the following proposition for the general case:
Proposition 4.1. If there is a pair $\left[n_{j}^{+}, n_{j}^{-}\right]$with $L_{j}=n_{j}^{-}-n_{j}^{+}<N$, then the $N \times\left(L_{j}+1\right)$ submatrix ($a_{m n}$) with $1 \leqslant m \leqslant N$ and $n_{j}^{+} \leqslant n \leqslant n_{j}^{-}$of the matrix A_{N} has the maximum rank L_{j}. (The same is also true for the case $L_{j}=2 N-n_{j}^{-}+n_{j}^{+}$.)

Proof. Since $L_{j}<N$, we have $\xi\left(\left[n_{j}^{+}, \ldots, n_{j}^{-}\right], *, \ldots, *\right)=0$ (see the N-soliton condition). Here the entries marked with $*$ are arbitrary columns of A_{N} whose maximum rank is N. If we choose $N-L_{j}-1$ independent columns for those entries, then the $\xi=0$ implies that the submatrix can have at most the rank L_{j}.

Then the following is immediate as a corollary of this proposition:
Corollary 4.1. If a pair $\left[n_{j}^{+}, n_{j}^{-}\right]$has the minimum length, i.e. $n_{j}^{-}=n_{j}^{+}+1$, then the $N \times 2$ submatrix with the columns $\left(a_{m n}\right)$ with $1 \leqslant m \leqslant N$ and $n=n_{j}^{+}, n_{j}^{-}$of the matrix should be in the form,

$$
\left[\begin{array}{cc}
0 & 0 \\
\vdots & \vdots \\
0 & 0 \\
1 & 1 \\
0 & 0 \\
\vdots & \vdots \\
0 & 0
\end{array}\right], \quad \text { where } 1 \mathrm{~s} \text { are in the } j \text { th row. }
$$

Proof. From proposition 4.1, the rank of the submatrix is 1 . This implies that the rows of the submatrix are all proportional. Since the entry $\left(j, n_{j}^{+}\right)$is the pivot 1 , all the other entries of this column should be zero in the RREF. This gives the result.

This corollary shows that the line soliton marked by $\left[n_{j}^{+}, n_{j}^{-}\right]$of length 1 intersects with all other solitons without resonance, that is, the interactions are either O-type or P-type. Note that in this case $\left[n_{j}^{+}, n_{j}^{-}\right]$cannot have partial overlap with other pairs, and this can be seen in the matrix A_{N}. Proposition 4.1 provides the interaction structure of N-soliton solution for O-type and P-type.

We now show that the Young diagrams Y^{+}and Y^{-}provide some information on the interaction pattern of the N-soliton solution. If we ignore the phase shifts and resonances among the solitons, the N-soliton solution has $\frac{N(N-1)}{2}$ vertices in a generic situation. Then one can find the number of vertices having a particular type of interactions.

Theorem 4.3. The N-soliton solution labelled by the pair of Young diagrams $\left(Y^{+}, Y^{-}\right)$has

- $\left|Y^{+}\right|$number of vertices of O-type, and
- $\left|Y^{-}\right|$number of vertices of P-type.

The number of resonant vertices, T-type, is then given by

$$
\frac{N(N-1)}{2}-\left|Y^{+}\right|-\left|Y^{-}\right|
$$

Proof. The Young diagram Y^{+}can be obtained directly from the matrix A_{N} : for example, consider $\mathbf{n}^{+}=(1,2,4,5,7)$ and $\mathbf{n}^{-}=(3,9,6,10,8)$. Then the graph showing the overlaps among $\left[n_{j}^{+}, n_{j}^{-}\right]$is given by

where the boxes under the non-pivots (\bullet) give Y^{+}, which is given by $(1,1,2)$ representing the number of boxes in the row from the bottom (Y^{+}-shape is just upside down picture of one given in the graph). It is then obvious that each \square provides O-type interaction, i.e. two solitons having no overlap. For example, [1, 3] has no overlap with [4, 6], [5, 10] and [7, 8]. This proves that $\left|Y^{+}\right|$gives the number of vertices of O-type.

The diagram Y^{-}gives the number of reverses in the sequence $\left(n_{1}^{-}, \ldots, n_{N}^{-}\right)$. Again consider the example above. The number $n_{2}^{-}=9$ has two reverses, 6 and 8 . Then from the graph above, this implies that [2, 9] has complete overlap with [4, 6] and [7, 8], i.e. [2, 9]soliton has P-type interaction with those solitons. Now it is obvious that $\left|Y^{-}\right|$gives the number of vertices of P-type.

Before ending this section, we give a complete list of the 3-soliton solutions with explicit examples of A_{3} matrices:

Case $a: \mathbf{n}^{+}=(1,2,3)$. In this case we have $m_{\mathbf{n}^{+}}=1 \cdot 2 \cdot 3=6$ different choices of \mathbf{n}^{-}; that is, six different 3-soliton solutions. Since the Young diagram Y^{+}has no box, $Y^{+}=\emptyset$, there is no O-type vertex in those solutions.
a1: $\mathbf{n}^{-}=(4,5,6)$. This is the case of the Toda lattice [1]. The pair of Young diagrams is (\emptyset, \emptyset), that is, all the vertices are T-type. Example of the matrix A_{3} is given by the following matrix. We also show the overlapping graph:

$$
\left(\begin{array}{cccccc}
1 & 0 & 0 & 1 & 3 & 6 \tag{array}\\
0 & 1 & 0 & -1 & -2 & -3 \\
0 & 0 & 1 & 1 & 1 & 1
\end{array}\right),
$$

a2: $\mathbf{n}^{-}=(4,6,5)$. This has two T-type vertices and one P-type vertex, i.e. $Y^{-}=\square$. In particular, the P-type interaction between [2, 6]- and [3, 5]-solitons implies that the $(3,6)$-entry should be zero (because of $\xi(1,2,6)=0$). Then we have an example

$$
\left(\begin{array}{cccccc}
1 & 0 & 0 & 1 & 2 & 4 \\
0 & 1 & 0 & -1 & -2 & -3 \\
0 & 0 & 1 & 1 & 1 & 0
\end{array}\right), \quad \begin{array}{ccccc}
\circ & - & - & \bullet & \\
& \circ & - & - & -
\end{array} \bullet
$$

Note here that the duality of $\xi(1,2,6)=0$ and $\xi(3,4,5)=0$. Both vanishing minors are due to the 3 -soliton condition for $L_{2}=L_{3}=2$.
a3: $\mathbf{n}^{-}=(5,4,6)$. This has again two T-type vertices and one P-type vertex (note that the Young diagram Y^{-}is the same as case 2a). An example of A_{3} is

$$
\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & 1 & 2 \\
0 & 1 & 0 & -1 & -2 & -2 \\
0 & 0 & 1 & 1 & 1 & 1
\end{array}\right),
$$

$$
\begin{array}{ccccc}
\circ & - & - & - & \bullet \\
& \circ & - & \bullet & \\
& \circ & - & - & \bullet
\end{array}
$$

Again note the 3 -soliton conditions for $L_{1}=L_{2}=2$ which give $\xi(1,5,6)=0$ and its dual $\xi(2,3,4)=0$. The $\xi(2,3,4)$ then gives (1, 4)-entry to be zero.
a4: $\mathbf{n}^{-}=(5,6,4)$. There are two P-type and one T-type vertices. We have

$$
\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & -2 & -1 \\
0 & 0 & 1 & 1 & 0 & 0
\end{array}\right)
$$

$-\quad \bullet$

Note here that the $[3,4]$-soliton has a P-type interaction with other two solitons, which gives the last row to be $(0,0,1,1,0,0)$ and third and fourth columns to be $e_{3} \in \mathbb{R}^{3}$ (see corollary 4.1).
a5: $\mathbf{n}^{-}=(6,4,5)$. This case is similar to the previous one, i.e. two P-types and one T-type. A_{3} is

$$
\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & -1 & -2 & 0 \\
0 & 0 & 1 & 1 & 1 & 0
\end{array}\right), \quad \begin{array}{cccccc}
\circ & - & - & - & - & \bullet \\
& \circ & - & \bullet &
\end{array}
$$

a6: $\mathbf{n}^{-}=(6,5,4)$. All the vertices are of P-type, and the matrix A_{3} can be written as

$$
\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & -1 & 0 \\
0 & 0 & 1 & 1 & 0 & 0
\end{array}\right),
$$

The Young diagram Y^{-}is maximum with three boxes.
In these examples, one should note that the pattern of the zeros in the last three columns (non-pivot columns) presents the shape of the corresponding Young diagram Y^{-}.
Case $b: \mathbf{n}^{+}=(1,2,4)$. There are $m_{\mathbf{n}^{+}}=1 \cdot 2 \cdot 2=4$ different types of 3 -soliton solutions.
Now the Y^{+}has one box, there is one O-type interaction in these solutions.
b1: $\mathbf{n}^{-}=(3,5,6)$. There are two T-type vertices and one O-type. An example of A_{3} matrix is

$$
\left(\begin{array}{cccccc}
1 & 0 & -1 & 0 & 1 & 2 \\
0 & 1 & 2 & 0 & -1 & -2 \\
0 & 0 & 0 & 1 & 1 & 1
\end{array}\right), \quad \begin{array}{cccccc}
& - & \bullet & & \\
& & & - & - & \bullet \\
& & & \circ & - & \bullet
\end{array}
$$

Note here the duality in $\xi(1,2,3)=0$ and $\xi(4,5,6)=0$.
b2: $\mathbf{n}^{-}=(3,6,5)$. The Y^{-}has one box, and the vertices are all different types; O, N and T .
An example of A_{3} can be

$$
\left(\begin{array}{cccccc}
1 & 0 & -1 & 0 & 0 & 2 \\
0 & 1 & 1 & 0 & 0 & -1 \\
0 & 0 & 0 & 1 & 1 & 0
\end{array}\right), \quad \begin{array}{cccccc}
& - & \bullet & & \\
& & \circ & - & - & -
\end{array} \bullet
$$

$\mathrm{b} 3: \mathbf{n}^{-}=(5,3,6)$. This is similar to the previous case of $\mathrm{b} 2 . A_{3}$ can be

$$
\left(\begin{array}{llllll}
1 & 0 & 0 & 0 & 1 & 2 \\
0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1
\end{array}\right), \quad \begin{array}{cccccc}
& - & - & - & \bullet & \\
0 & & \circ & \bullet & & \\
& & & & \circ & -
\end{array} \bullet
$$

b4: $\mathbf{n}^{-}=(6,3,5)$. The Y^{-}has two boxes, and there are two P-type vertices and one O-type. The matrix A_{3} is given by

$$
\left(\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0
\end{array}\right)
$$

Case $c: \mathbf{n}^{+}=(1,2,5)$. There are $m_{\mathbf{n}^{+}}=1 \cdot 2 \cdot 1=2$ different 3 -soliton solutions. Since the Y^{+}has two horizontal boxes, there are two O-type vertices in these solutions.
c1: $\mathbf{n}^{-}=(3,4,6)$. The Y^{-}has no box, and the 3-soliton solution has one T-type interaction with two O-types. A matrix A_{3} can be

$$
\left(\begin{array}{cccccc}
1 & 0 & -1 & -2 & 0 & 0 \tag{array}\\
0 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1
\end{array}\right),
$$

c2: $\mathbf{n}^{-}=(4,3,6)$. The Y^{-}has one box, and the solution has one P-type interaction with two O-types. The matrix A_{3} is given by

$$
\left(\begin{array}{cccccc}
1 & 0 & 0 & -1 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1
\end{array}\right),
$$

$$
\begin{array}{cccc}
\circ & - & - & \bullet \\
& \circ & \bullet &
\end{array}
$$

Case d: $\mathbf{n}^{+}=(1,3,4)$. The Y^{+}has two boxes, and there are $m_{\mathbf{n}^{+}}=1 \cdot 1 \cdot 2=2$ different 3-soliton solutions which have two O-type interactions:
d1: $\mathbf{n}^{-}=(2,5,6)$. Since $Y^{-}=\emptyset$, there is one T-type intersection with two O-types. An example of the matrix A_{3} is

$$
\left(\begin{array}{cccccc}
1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & -1 & -2 \\
0 & 0 & 0 & 1 & 1 & 1
\end{array}\right)
$$

d2: $\mathbf{n}^{-}=(2,6,5)$. Now Y^{-}has one box, and the solution has one P-type interaction with two O-types. The matrix A_{3} is given by

$$
\left(\begin{array}{cccccc}
1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & -1 \\
0 & 0 & 0 & 1 & 1 & 0
\end{array}\right)
$$

$$
\begin{aligned}
& \circ \text { - } \\
& \begin{array}{cccc}
\circ & - & - & \bullet \\
\circ & \bullet &
\end{array}
\end{aligned}
$$

Figure 5. 3-soliton solutions. All the cases assume $\theta_{j}^{0}=0$ for all $j=1, \ldots, 6$. The top left figure shows the solution in case al with the parameters $\left(k_{1}, \ldots, k_{6}\right)=(-3,-2,0,1,2,3)$ and $t=7$. The top right figure shows case a 3 with $(-3,-1,0,1,2,3)$ and $t=7$. The one in the bottom left shows case a5 with $(-4,-1,0,1,2,3)$ and $t=4$, and that in the bottom right shows case c 1 with $(-2,-1,0,1,2,3)$ and $t=4$.

Case $e: \mathbf{n}^{+}=(1,3,5)$. This is the ordinary 3 -soliton solution with the matrix

$$
\left(\begin{array}{llllll}
1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1
\end{array}\right),
$$

\bigcirc

Some of the 3 -soliton solutions are illustrated in figure 5 . Note that in the matrix A_{3}, if there is only one nonzero entry in a column (like a pivot), then one can set the entry to be +1 or -1 by choosing some phase constant θ_{j}^{0}. Those A_{3} in cases $\mathrm{a} 6, \mathrm{~b} 4, \mathrm{c} 2, \mathrm{~d} 2$ and e are unique in this sense.

5. N-soliton solutions of the KdV equation

Here we consider N-soliton solutions of the KdV equation, and show that they cannot have a resonant interaction. N-soliton solutions of the KdV equation can be obtained by the

Figure 6. 3 -soliton solutions of the KdV equation labelled by $\mathbf{n}^{+}=(1,2,3)$ and $\mathbf{n}^{-}=(6,5,4)$. The left figure shows the 3 -soliton solution in the $x-y$ plane at $t=25$ with $\theta_{j}=0, \forall j$. The right one shows the solution in the $x-t$ plane with different θ_{j}. The k_{j} are given by $\left(k_{1}, \ldots, k_{6}\right)=(-4 / 3,-1,-1 / 2,1 / 2,1,4 / 3)$.
constraint $\partial u / \partial y=0$ in the KP equation. Since line solitons are given by $\left[n_{j}^{+}, n_{j}^{-}\right]$-solitons for $j=1, \ldots, N$, the constraint implies that all the solitons are parallel to the y-axis, i.e.

$$
c_{j}=k_{n_{j}^{+}}+k_{n_{j}^{-}}=0 \quad \text { for all } \quad j=1, \ldots, N
$$

Now from the ordering $k_{1}<\cdots<k_{2 N}$, we assume k_{j} to satisfy

$$
k_{1}<k_{2}<\cdots<k_{N}<0, \quad k_{N+j}=-k_{N-j+1} \quad \text { for } \quad j=1, \ldots, N .
$$

Then we take the set $\left(\mathbf{n}^{+}, \mathbf{n}^{-}\right)$as

$$
n_{j}^{+}=j, \quad n_{j}^{-}=2 N-j+1 \quad \text { for } \quad j=1, \ldots, N,
$$

which leads to $c_{j}=0$ for all $j=1, \ldots, N$. In terms of the matrix A_{N}, this corresponds to

$$
A_{N}=\left(\begin{array}{cccccccc}
1 & 0 & \cdots & 0 & 0 & \cdots & 0 & * \\
0 & 0 & \cdots & 0 & 0 & \cdots & * & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 1 & * & \cdots & 0 & 0
\end{array}\right)
$$

This matrix indicates that any pair of line solitons are of P-type, that is, all the interactions are non-resonant. Each line soliton has the following form:

$$
u(x, t)=2 k_{j}^{2} \operatorname{sech}^{2} \theta_{j}, \quad \text { with } \quad \theta_{j}=-k_{j} x-k_{j}^{3} t+\theta_{j}^{0} .
$$

Thus each soliton has the velocity $\mathrm{d} x / \mathrm{d} t=-k_{j}^{2}$. We illustrate a 3 -soliton solution of the KdV equation in figure 6 .

Acknowledgments

The author would like to thank G Biondini for valuable discussions and a Mathematica program for the calculation of the τ-functions. He also thanks O Pashaev for showing him the reference [8] before publication and for valuable discussions on AKNS reductions of the KP equation. This research is partially supported by the NSF grant DMS0404931.

References

[1] Biondini G and Kodama Y 2003 On a family of solutions of the Kadomtsev-Petviashvili equation which also satisfy the Toda lattice hierarchy J. Phys. A: Math. Gen. 36 10519-36
[2] Freeman N C and Nimmo J J C 1983 Soliton-solutions of the Korteweg-deVries and Kadomtsev-Petviashvili equations: the Wronskian technique Phys. Lett. A 95 1-3
[3] Gantmacher F R 1959 Theory of Matrices vol 2 (New York: Chelsea)
[4] Griffiths P and Harris J 1978 Principles of Algebraic Geometry (New York: Wiley)
[5] Hirota R, Ohta Y and Satsuma J 1988 Wronskian structures of solitons for soliton equations Prog. Theor. Phys. Suppl. 94 59-72
[6] Infeld E and Rowlands G 1990 Nonlinear Waves, Solitons and Chaos (Cambridge: Cambridge University Press) 205-12
[7] Kadomtsev B B and Petviashvili V I 1970 On the stability of solitary waves in weakly dispersive media Sov. Phys. Dokl. 15 539-41
[8] Pashaev O K and Yerbag-Francisco M L 2004 Degenerate four virtual soliton resonance for KP-II Preprint hep-th/0410031
[9] Sato M 1981 Soliton equations as dynamical systems on an infinite dimensional Grassmann manifolds RIMS Kokyuroku 439 30-46

