

Young diagrams and N-soliton solutions of the KP equation

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2004 J. Phys. A: Math. Gen. 37 11169 (http://iopscience.iop.org/0305-4470/37/46/006)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 171.66.16.65 The article was downloaded on 02/06/2010 at 19:44

Please note that terms and conditions apply.

J. Phys. A: Math. Gen. 37 (2004) 11169-11190

PII: S0305-4470(04)84263-X

Young diagrams and *N*-soliton solutions of the KP equation

Yuji Kodama

Department of Mathematics, Ohio State University, Columbus, OH 43210, USA

E-mail: kodama@math.ohio-state.edu

Received 30 July 2004, in final form 27 September 2004 Published 3 November 2004 Online at stacks.iop.org/JPhysA/37/11169 doi:10.1088/0305-4470/37/46/006

Abstract

We consider N-soliton solutions of the KP equation,

 $(-4u_t + u_{xxx} + 6uu_x)_x + 3u_{yy} = 0.$

An *N*-soliton solution is a solution u(x, y, t) which has the same set of *N* line soliton solutions in both asymptotics $y \to \infty$ and $y \to -\infty$. The *N*-soliton solutions include all possible resonant interactions among those line solitons. We then classify those *N*-soliton solutions by defining a pair of *N* numbers $(\mathbf{n}^+, \mathbf{n}^-)$ with $\mathbf{n}^\pm = (n_1^\pm, \dots, n_N^\pm), n_j^\pm \in \{1, \dots, 2N\}$, which labels *N* line solitons in the solution. The classification is related to the Schubert decomposition of the Grassmann manifolds Gr(N, 2N), where the solution of the KP equation is defined as a torus orbit. Then the interaction pattern of *N*-soliton solution can be described by the pair of Young diagrams associated with $(\mathbf{n}^+, \mathbf{n}^-)$. We also show that *N*-soliton solutions of the KdV equation obtained by the constraint $\partial u/\partial y = 0$ cannot have resonant interaction.

PACS numbers: 02.30.Jr, 02.30.Ik, 05.45.Yv

1. Introduction

In this paper, we consider a family of exact solutions of the KP equation,

$$\frac{\partial}{\partial x}\left(-4\frac{\partial u}{\partial t}+\frac{\partial^3 u}{\partial x^3}+6u\frac{\partial u}{\partial x}\right)+3\frac{\partial^2 u}{\partial y^2}=0.$$

The solution u(x, y, t) is obtained from the τ -function $\tau(x, y, t)$ as

$$u(x, y, t) = 2\frac{\partial^2}{\partial x^2} \log \tau(x, y, t)$$

0305-4470/04/4611169+22\$30.00 © 2004 IOP Publishing Ltd Printed in the UK

11169

It is well known that some solutions can be obtained by the Wronskian form (for example, see [2] or the appendix in [1]),

$$\tau = \operatorname{Wr}(f_1, \dots, f_N) := \begin{vmatrix} f_1^{(0)} & \cdots & f_N^{(0)} \\ \vdots & \ddots & \vdots \\ f_1^{(N-1)} & \cdots & f_N^{(N-1)} \end{vmatrix},$$
(1.1)

where $f_i^{(n)} = \partial^n f_i / \partial x^n$, and $\{f_i(x, y, t) \mid i = 1, ..., N\}$ is a linearly independent set of N solutions of the equations,

$$\frac{\partial f_i}{\partial y} = \frac{\partial^2 f_i}{\partial x^2} \qquad \frac{\partial f_i}{\partial t} = \frac{\partial^3 f_i}{\partial x^3}.$$

Throughout this paper, we assume $f_i(x, y, t)$ to have the form

$$f_i = \sum_{j=1}^{M} a_{ij} e^{\theta_j}, \quad \text{for } i = 1, \dots, N, \quad \text{and} \quad M > N,$$
 (1.2)

with some constants a_{ij} which define the $N \times M$ matrix $A_{(N,M)} := (a_{ij})$, and the phase functions θ_i are given by

$$\theta_j(x, y, t) = -k_j x + k_j^2 y - k_j^3 t + \theta_j^0 \quad \text{for} \quad j = 1, \dots, M.$$
(1.3)

Here k_j and θ_j^0 are arbitrary constants, and throughout this paper we assume k_j being ordered as

$$k_1 < k_2 < \cdots < k_M.$$

Then choosing particular forms for the matrix $A_{(N,M)}$, one can obtain several exact solutions of the KP equation. As the simplest case with N = 1 and M = 2, i.e. $\tau = f_1 = a_{11} e^{\theta_1} + a_{12} e^{\theta_2}$ with $a_{11}a_{12} > 0$, we have 1-soliton solution,

$$u = 2\frac{\partial^2}{\partial x^2}\log\tau = \frac{1}{2}(k_1 - k_2)^2 \operatorname{sech}^2 \frac{1}{2}(\theta_1 - \theta_2).$$
(1.4)

Here we assumed $a_{11}, a_{12} > 0$ and absorbed them into the constants θ_j^0 , so that we have $a_{11} = a_{12} = 1$. Note here that if $a_{11}a_{12} < 0$, then the τ -function has zeros and the solution blows up at some points in the *x*-*y* plane. In the *x*-*y* plane, 1-soliton solution describes a plane wave $u = \Phi(k_x x + k_y y - \omega t)$ having the wavenumber vector $\mathbf{k} = (k_x, k_y)$ and the frequency ω ,

$$\mathbf{k} = \left(-k_1 + k_2, k_1^2 - k_2^2\right) \qquad \omega = k_1^3 - k_2^3.$$

Here (\mathbf{k}, ω) satisfies the dispersion relation, $4\omega k_x + k_x^4 + 3k_y^2 = 0$. We refer to the 1-soliton solution as a line soliton, which is expressed by a line $\theta_1 = \theta_2$ in the *x*-*y* plane for a fixed *t*. Then the slope of the line $c = dx/dy = -k_y/k_x$ represents the velocity of the line soliton in the *x*-direction with respect to *y*; that is, c = 0 indicates the direction of the positive *y*-axis. As in paper [1], we also call a line soliton [*i*, *j*]-soliton, if the soliton is parametrized by the pair (k_i, k_j) . In the case of (1.4), the soliton is [1, 2]-soliton with the velocity $c = k_1 + k_2$. Then the ordinary *N*-soliton solution consisting of *N* line solitons, [2j - 1, 2j]-soliton with j = 1, ..., N, is obtained from the following matrix $A_{(N,M)}$ with M = 2N [5],

$$A_{(N,2N)} = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 & \cdots & \cdots & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & \cdots & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \cdots & \cdots & \ddots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & \cdots & \cdots & \cdots & \cdots & 0 & 1 & 1 \end{pmatrix}.$$

Note here that all nonzero entries are normalized to be one by choosing appropriate constants θ_j^0 , and any $N \times N$ minor of the matrix $A_{(N,2N)}$ is non-negative. The fact that all $N \times N$ minors are non-negative (or non-positive) is sufficient for the solution to be non-singular (see below).

Also in paper [1], we found that if all the minors are nonzero and have the same sign, the solution u gives an (M - N, N)-soliton solution consisting of M - N incoming line solitons as $y \to -\infty$ and N outgoing line solitons as $y \to \infty$. The set of τ -functions with different size N then provide the solution of the Toda lattice. In particular, if M = 2N, we have N-soliton solution in the sense that the solution has the same set of N line solitons in both asymptotics for $y \to \pm \infty$ (i.e. the sets of incoming and outgoing solitons are the same). However as mentioned in [1], this N-soliton solution is different from the ordinary N-soliton solution, and the interaction of any pair of line solitons is in resonance, i.e. every interaction point of line solitons. In this case, the matrix $A_{(N,2N)}$ can be written in the following row reduced echelon form (RREF),

$$A_{(N,2N)} = \begin{pmatrix} 1 & 0 & \cdots & 0 & * & * & \cdots & * \\ 0 & 1 & \cdots & 0 & * & * & \cdots & * \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 & * & * & \cdots & * \end{pmatrix}$$

where the entries marked by '*' are chosen so that all the $N \times N$ minors are nonzero and positive (i.e. all the * of the last row should be all positive, and those in the second row from the bottom are negative and so on). Note here that those * are all nonzero. Then the line solitons in *N*-soliton solution of the Toda lattice hierarchy are given by [j, N + j]-soliton for j = 1, ..., N.

We then expect that the general case of *N*-soliton solutions has a mixed pattern consisting of resonant and non-resonant interactions among those line solitons. In this paper, we classify all the possible *N*-soliton solutions obtained by the τ -function (1.1) with f_j in (1.2) and M = 2N. The classification is to determine all possible patterns of interactions, and it is done by constructing a specific form of the coefficient matrix $A_N := A_{(N,2N)}$ in (1.2) for each class of *N*-soliton solutions. It turns out that a complete classification of *N*-soliton solutions can be obtained by the complementary pair of ordered sets of *N* numbers, $\mathbf{n}^+ = (n_1^+, \ldots, n_N^+)$ and $\mathbf{n}^- = (n_1^-, \ldots, n_N^-)$, which are related to the dominant exponentials in the τ -function for $x \to \pm \infty$ and each soliton is given by $[n_j^+, n_j^-]$ -soliton. Note that with the set $\{1, \ldots, 2N\}$, there are (2N - 1)!! number of different sets of *N* pairs. We then claim that each set of *N* pairs corresponds to an *N*-soliton solution, and provides an explicit way to construct all those *N*-soliton solutions.

It is also well known that a solution of the KP hierarchy is a $GL(\infty)$ -orbit on an infinite-dimensional Grassmannian (Sato Grassmannian) [9]. Then the *N*-soliton solution can be identified as the 2*N*-dimensional torus orbit on the Grassmannian Gr(N, 2N), and the coefficient matrix A_N represents a point on Gr(N, 2N). Since the Grassmannian has the Schubert cell decomposition, one can first classify the matrix A_N using the decomposition, i.e. identify the cell A_N belongs to. This classification corresponds to the set \mathbf{n}^+ , and the \mathbf{n}^- gives a further decomposition of the cells to classify the interaction patterns of *N*-soliton solutions. We then define a pair of Young diagrams (Y^+, Y^-) associated with the pair of the number sets $(\mathbf{n}^+, \mathbf{n}^-)$. In particular, the number of resonant vertices in the *N*-soliton solution

parametrized by (Y^+, Y^-) is given by

$$\frac{N(N-1)}{2} - |Y^+| - |Y^-|$$

where $|Y^{\pm}|$ denote the size (degree) of the diagrams, i.e. the number of boxes in the diagrams (theorem 4.3).

The paper is organized as follows. In section 2, we give a general basic structure of the τ -function, and present all types of 2-soliton solutions, which provide the building blocks for the general case of *N*-soliton solutions. Here we also introduce the pair of numbers $(\mathbf{n}^+, \mathbf{n}^-)$, and the Young diagrams (Y^+, Y^-) . In section 3, we briefly introduce the Grassmannian $\operatorname{Gr}(N, M)$ and the Schubert decomposition of $\operatorname{Gr}(N, M)$. We also identify *N*-soliton solution as a 2*N*-dimensional torus orbit on $\operatorname{Gr}(N, 2N)$, and briefly mention that $\operatorname{Gr}(N, 2N)$ contains all possible (m, n)-soliton solutions for $1 \leq m \leq N$ and $1 \leq n \leq N$, which are distinguished by the Schubert decomposition. Here (m, n)-soliton is the solution consisting of *m* incoming solitons for $y \to -\infty$ and *n* outgoing solitons for $y \to \infty$ (see [1]). In section 4, we describe the structure of the coefficient matrix A_N for each *N*-soliton solution by prescribing an explicit construction of the matrix A_N . We here define the *N*-soliton interaction in the *N*-soliton solution. Finally, in section 5, we discuss *N*-soliton solutions of the KdV equation, and show that the KdV *N*-soliton solution cannot have resonant interactions.

2. Basic structure of the τ -function and 2-soliton solutions

Let us start with the following lemma which shows the basic structure of the τ -function:

Lemma 2.1. The τ -function (1.1) with f_j given in (1.2) can be expanded as a sum of exponential functions,

$$\tau = \sum_{1 \leq i_1 < \dots < i_N \leq M} \xi(i_1, \dots, i_N) \prod_{1 \leq j < l \leq N} \left(k_{i_j} - k_{i_l} \right) \exp\left(\sum_{j=1}^N \theta_{i_j}\right),$$

where $\xi(i_1, \ldots, i_N)$ is the $N \times N$ minor given by the i_j th columns with $j = 1, \ldots, N$ in the matrix $A_{(N,M)} = (a_{ij})$ of (1.2),

$$\xi(i_1, \dots, i_N) := \begin{vmatrix} a_{1,i_1} & \cdots & a_{1,i_N} \\ \vdots & \ddots & \vdots \\ a_{N,i_1} & \cdots & a_{N,i_N} \end{vmatrix}$$

Proof. Apply the Binet–Cauchy theorem for the expression (see, for example, [3]),

$$\tau = \left| \begin{pmatrix} E_1^{(0)} & E_2^{(0)} & \cdots & E_M^{(0)} \\ E_1^{(1)} & E_2^{(1)} & \cdots & E_M^{(1)} \\ \vdots & \vdots & \ddots & \vdots \\ E_1^{(N-1)} & E_2^{(N-1)} & \cdots & E_M^{(N-1)} \end{pmatrix} \begin{pmatrix} a_{11} & a_{21} & \cdots & a_{N1} \\ a_{12} & a_{22} & \cdots & a_{N2} \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ a_{1M} & a_{2M} & \cdots & a_{NM} \end{pmatrix} \right|,$$

where $E_j^{(n)} = (-k_j)^n E_j$ with $E_j = e^{\theta_j}$.

From this lemma, it is clear that if all the minors $\xi(i_1, \ldots, i_N)$ are non-negative (or nonpositive), then the τ -function is sign definite and the corresponding solution u is non-singular (recall also the order $k_1 < \cdots < k_M$). This is the first restriction on the matrix $A_{(N,M)}$ for N-soliton solution, and we later impose that all the $N \times N$ minors are non-negative after making $A_{(N,M)}$ to be in the row reduced echelon form.

We now consider the case of *N*-soliton solutions, that is, we take M = 2N. With the ordering of the numbers k_j , i.e. $k_1 < k_2 < \cdots < k_{2N}$, one can find the asymptotic behaviour of the τ -function for $x \to \pm \infty$: for this purpose, we first define the function w given by

$$w(x, y, t) = -\frac{\partial}{\partial x} \log \tau(x, y, t).$$

Suppose that w has the asymptotic form with some numbers $\{n_1^{\pm}, \ldots, n_N^{\pm}\} \subset \{1, \ldots, 2N\},\$

$$w \longrightarrow \begin{cases} \sum_{j=1}^{N} k_{n_{j}^{+}} & \text{as} \quad x \to \infty, \\ \sum_{j=1}^{N} k_{n_{j}^{-}} & \text{as} \quad x \to -\infty. \end{cases}$$
(2.1)

It is clear that $n_i^+ \neq n_j^+$ and $n_i^- \neq n_j^-$ if $i \neq j$. Then with the sets of N numbers n_j^{\pm} in the asymptotics (2.1), we define the following two N-vectors with the entries from the set $\{1, 2, ..., 2N\}$:

Definition 2.1. A pair $(\mathbf{n}^+, \mathbf{n}^-)$ of N-vectors are defined by

$$\begin{cases} \mathbf{n}^{+} = (n_{1}^{+}, n_{2}^{+}, \dots, n_{N}^{+}) & \text{with} \quad 1 = n_{1}^{+} < n_{2}^{+} < \dots < n_{N}^{+} < 2N, \\ \mathbf{n}^{-} = (n_{1}^{-}, n_{2}^{-}, \dots, n_{N}^{-}) & \text{with} \quad n_{j}^{-} > n_{j}^{+}. \end{cases}$$

The ordering in the set \mathbf{n}^+ is just a convenience, and once we make the ordering in \mathbf{n}^+ , we do not assume a further ordering for the other set \mathbf{n}^- . We assume that those sets are complementary in the set $\{1, 2, ..., 2N\}$. As will be explained below, this assumption is necessary to have an *N*-soliton solution, that is, the solution has the same sets of *N* line solitons in both asymptotics $y \to \pm \infty$.

With those number sets \mathbf{n}^+ and \mathbf{n}^- , one can define the pair of Young diagrams (Y^+, Y^-) :

Definition 2.2. We define a pair (Y^+, Y^-) associated with the pair $(\mathbf{n}^+, \mathbf{n}^-)$:

- The Y^+ is a Young diagram represented by $(\ell_1^+, \ldots, \ell_N^+)$ with $\ell_j^+ = n_j^+ j$ where each ℓ_j^+ represents the number of boxes in a row counting from the bottom (note $\ell_i^+ \leq \ell_{i+1}^+$).
- The Y[−] is a Young diagram associated with (l₁[−],..., l_N[−]), where l_j[−] is defined as the number of reverses in the sequence (n₁[−],..., n_N[−]) for each n_j[−], i.e.

$$\ell_i^- = |\{n_k^- \mid n_k^- < n_i^- \text{ for } k > j\}|.$$

Here $|\{S\}|$ *implies the number of elements in the set* $\{S\}$ *. Then* ℓ_j^- *represents the number of boxes in a row arranged in the increasing order from the bottom.*

Note that the Young diagram Y^+ is uniquely determined from \mathbf{n}^+ , but the diagram Y^- is not unique (note that $(\ell_1^-, \ldots, \ell_N^-)$) is unique of course). However, the number of boxes in Y^- gives the number of intersection vertices of *N*-soliton solution having a particular type of interaction (theorem 4.3).

As a main goal of this paper, we will show in section 4 that for each pair $(\mathbf{n}^+, \mathbf{n}^-)$ one can construct an *N*-soliton solution consisting of *N* line solitons, each of which is given by $[n_j^+, n_j^-]$ -soliton for j = 1, ..., N. The total number of different *N*-soliton solutions is given by (2N - 1)!! which is the number of different sets of pairs $\{(\mathbf{n}^+, \mathbf{n}^-)\}$. Namely, we construct an *N*-soliton solution which is labelled by $(\mathbf{n}^+, \mathbf{n}^-)$ as follows:

- (1) Consider a set of 2N numbers $\{1, ..., 2N\}$, which are associated with the parameters $k_1 < \cdots < k_{2N}$.
- (2) Choose N different pairs from $\{1, ..., 2N\}$, and label each pair as $[n_j^+, n_j^-]$ so that the numbers n_j^{\pm} satisfy

(i)
$$n_j^+ < n_j^-$$
 for $j = 1, ..., N$;

- (ii) $1 = n_1^+ < n_2^+ < \dots < n_N^+$.
- (3) Define the pair $(\mathbf{n}^+, \mathbf{n}^-)$ with $\mathbf{n}^{\pm} = (n_1^{\pm}, \dots, n_N^{\pm})$, and construct the corresponding matrix $A_N = A_{(N,2N)}$.

Note here that the labelling is unique with a given choice of pairs, and the corresponding *N*-soliton solution consists of $[n_j^+, n_j^-]$ -solitons for j = 1, ..., N. Item (3) will be given in section 4.

In order to classify those N-soliton solutions, we first note

Lemma 2.2. For each given ordered set \mathbf{n}^+ , the number of choices of \mathbf{n}^- is given by

$$m_{\mathbf{n}^+} = \prod_{j=1}^N \left(2j - n_j^+\right).$$

Proof. Since $n_N^- > n_N^+$, there are $(2N - n_N^+)$ numbers of possible choices of n_N^- . Having made a choice of n_N^- , one has $2(N - 1) - n_{N-1}^+$ many choices for n_{N-1}^- . Now repeating this, the result is obvious.

This lemma provides the number of different *N*-soliton solutions having the same \mathbf{n}^+ , that is, the functions $w = -(\partial/\partial x) \log \tau$ for those solutions have the same asymptotic values for $x \to \pm \infty$. As a corollary of this lemma, we also have the following identity:

$$(2N-1)!! = \sum_{\mathbf{n}^+} m_{\mathbf{n}^+}$$

We also have the following lemma for the ordered set **n**⁺:

Lemma 2.3. Each number n_i^+ in the \mathbf{n}^+ is limited as

$$n_{i}^{+} \leq 2j - 1$$
 for $j = 1, ..., N$.

Proof. Since $n_j^+ < n_j^-$, there are N - j numbers of n_k^+ and N - j + 1 of n_k^- , which are larger than n_j^+ , that is, we have

$$(N-j) + (N-j+1) \leqslant 2N - n_j^+.$$

This implies the lemma.

In terms of the Young diagram Y^+ , we have

Corollary 2.1. The maximum diagram for Y^+ , denoted as Y_{max} , is the Young diagram associated with $\mathbf{n}^+ = (1, 3, ..., 2N - 1)$, that is, Y_{max} is the upside down staircase with the size

$$|Y_{\max}| = \frac{N(N-1)}{2}.$$

The maximum Young diagram for Y^- is also given by Y_{max} , which now corresponds to the case $\mathbf{n}^- = (2N, 2N - 1, ..., N + 1)$. Then the Young diagrams Y^{\pm} associated with N-soliton solutions are given by a subdiagram of Y_{max} .

Figure 1. An *N*-soliton solution. The label $[n_j^+, n_j^-]$ indicates the $[n_j^+, n_j^-]$ -soliton. Here the soliton velocities $c_j := k_{n_j^+} + k_{n_j^-}$ are assumed to be ordered as $c_{j+1} > c_j$. Each asymptotic region is marked by the value of the function *w* there, i.e. (i_1, \ldots, i_N) implies $w = \sum_{j=1}^N k_{i_j}$.

Note that $|Y_{\text{max}}|$ is also the number of intersection vertices of N lines in a plane in the general position. We will then determine whether each point is of resonant or non-resonant type.

In figure 1, we illustrate the asymptotic stage of an *N*-soliton solution with *N* solitons marked by $[n_j^+, n_j^-]$ for j = 1, ..., N. We note a duality of the values of *w* in the sense that if *w* takes $\sum_{j=1}^N k_{i_j}$, denoted as $(i_1, ..., i_N)$ in the figure, then *w* also takes $(j_1, ..., j_N)$ which is the complementary set of $(i_1, ..., i_N)$ in $\{1, ..., 2N\}$. In terms of the minors, this implies that if $\xi(i_1, ..., i_N) \neq 0$ then $\xi(j_1, ..., j_N) \neq 0$. The duality can be considered as a geometric symmetry of the *N*-soliton solution: in particular, if $\theta_j^0 = 0$ for all *j*, then *N*-soliton solution has the symmetry $(x, y, t) \leftrightarrow (-x, -y, -t)$. In this case, at t = 0 all the solitons intersect at the origin in the *x*-*y* plane (see figure 4). Then each soliton can be moved by shifting θ_j^0 . A duality in the interaction region can be seen in figure 2 where two figures ((*A*) and (*B*)) of 3-soliton solution are illustrated. Note the duality in the middle region which implies $\xi(n_1^-, n_2^+, n_3^-) \neq 0$ and $\xi(n_1^+, n_2^-, n_3^+) \neq 0$. With this symmetry, we define the duality of the τ -function:

Definition 2.3. We state that the τ -function in lemma 2.1 with M = 2N satisfies the duality, if for any complementary sets $\{i_1, \ldots, i_N\}$ and $\{j_1, \ldots, j_N\}$, the minors satisfy

$$\xi(i_1, ..., i_N) = 0$$
 if and only if $\xi(j_1, ..., j_N) = 0$.

Before we discuss the general case with arbitrary N, we list up all possible 2-soliton solutions, and show that the τ -functions for those cases all satisfy the duality. As will be shown below, those solutions give the building blocks of N-soliton solutions. There are three cases of the solutions (see also [6]), which are labelled by the pair $(\mathbf{n}^+, \mathbf{n}^-)$ with $\mathbf{n}^{\pm} = (n_1^{\pm}, n_2^{\pm})$. Two line solitons are labelled by $[n_1^+, n_1^-]$ and $[n_2^+, n_2^-]$:

Figure 2. A duality in two equivalent 3-soliton solutions. The values of the function w(x, y, t) in the middle region are expressed as $(n_{\pm}^{\pm}, n_{\mp}^{\pm}, n_{3}^{\pm})$ showing the duality of the τ -function.

(i) $\mathbf{n}^+ = (1, 3)$ and $\mathbf{n}^- = (2, 4)$. This corresponds to the ordinary 2-soliton solution, and the matrix A_2 which we denote as $A_2^{(O)}$, takes the form (after choosing θ_i^0 properly),

$$A_2^{(O)} = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$

which gives only four nonzero minors, $\xi(1, 3)$, $\xi(1, 4)$, $\xi(2, 3)$ and $\xi(2, 4)$. This shows the duality, i.e. $\xi(1, 2) = \xi(3, 4) = 0$. Those nonzero minors then label the four asymptotic regions separated by two line solitons: denoting $(i, j) := k_i + k_j$, w takes (1, 3) as $x \to \infty$ which is dual to (2, 4) as $x \to -\infty$. Also w takes (1, 4) as $y \to \infty$, which is dual to (2, 3) as $y \to -\infty$. This also implies that there is no other transition of the w value, hence the interaction is not of resonant type.

The Young diagram Y^+ in this case is the maximum one, i.e. $Y^+ = \Box$. The diagram Y^- has no box, $Y^- = \emptyset$. The interaction of O-type is thus labelled by the Young diagram Y^+ . It is also useful to note that the intervals defined by the labels [1, 2] and [3, 4] of solitons have no overlaps. Non-overlapping property can be stated as $\xi(1, 2) = 0$ and its dual one $\xi(3, 4) = 0$ (see also the examples in the end of section 4).

(ii) $\mathbf{n}^+ = (1, 2)$ and $\mathbf{n}^- = (3, 4)$. This case corresponds to the 2-soliton solution of the Toda lattice [1], and the matrix A_2 , denoted as $A_2^{(T)}$, has the structure

$$A_2^{(T)} = \begin{pmatrix} 1 & 0 & - & - \\ 0 & 1 & + & + \end{pmatrix},$$

where '+, -' shows the signs of the entries (also nonzero). An explicit example of $A_2^{(T)}$ is

$$A_2^{(T)} = \begin{pmatrix} 1 & 0 & -1 & -2 \\ 0 & 1 & 1 & 1 \end{pmatrix}$$

and the corresponding 2-soliton solution is illustrated as T-type in figure 3. Following the arguments in [1], one can easily show that two solitons are given by [1, 3]- and [2, 4]-solitons, and the interaction is in resonance. The main point in this example is that all the 2×2 minors of $A_2^{(T)}$ are nonzero, and this results in resonance interaction. The non-vanishing condition of all the minors is necessary to make the resonant interaction, and

Figure 3. 2-soliton solutions. Two line solitons in those figures are [1, 2]- and [3, 4]-solitons for O-type, [1, 3]- and [2, 4]-solitons for T-type, and [1, 4]- and [2, 3]-solitons for P-type. The parameters are chosen as $(k_1, k_2, k_3, k_4) = (-2, 0, 1, 2)$ and $\theta_i^0 = 0, \forall j$ for all types.

those minors describe the intermediate solitons which form a *Y*-shape resonant interaction (see [1] for more detail).

Again we note the duality in the values of w in the asymptotics: w takes (3, 4) for $x \to -\infty$ which is dual to (1, 2) for $x \to \infty$. Also w takes (1, 4) for $y \to \infty$, which is dual to (2, 3) for $y \to -\infty$. One more duality appears in the inside of the resonant hole, that is, w takes (1, 3) for t > 0, which is dual to (2, 4) for t < 0 (or vice versa). Thus all six nonzero minors contribute to make the resonant interaction. The pair (Y^+, Y^-) of the Young diagrams is then given by (\emptyset, \emptyset) . Also note that the intervals defined by the labels of solitons, [1, 3] and [2, 4], have a partial overlap.

(iii) $\mathbf{n}^+ = (1, 2)$ and $\mathbf{n}^- = (4, 3)$. This case has been noted in [6], and the corresponding matrix A_2 , denoted as $A_2^{(P)}$ (*P* stands for *physical*, see remark 2.4), is given by (after choosing θ_i^0 properly)

$$A_2^{(P)} = \begin{pmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 1 & 0 \end{pmatrix},$$

which gives again only four nonzero minors with $\xi(1, 2), \xi(1, 3), \xi(2, 4)$ and $\xi(3, 4)$. This also implies no resonance, and the solitons are given by [1, 4]- and [2, 3]-solitons. This solution is similar to the O-type, but the pair of the Young diagrams is different, and given by (\emptyset, \Box) . The interaction of this type is labelled by the Young diagram Y^- . Also the intervals defined by the labels of solitons, [1, 4] and [2, 3], have complete overlap, i.e. the interval (2, 3) is in (1, 4). This implies $\xi(2, 3) = 0$ and its dual $\xi(1, 4) = 0$.

One should note that we have the following order in the soliton velocities $c_{ij} := k_i + k_j$ among those solitons for given constants k_j with the order $k_1 < k_2 < k_3 < k_4$,

$$c_{12} < c_{13} < c_{14}, c_{23} < c_{24} < c_{34}.$$

Here note that c_{14} and c_{23} cannot have a definite order (even $c_{14} = c_{23}$ is possible). This ordering indicates that any 2-soliton solution can be classified as one of those three solitons. One should note here that the type for a given pair of solitons is completely determined by their labels $[n_j^+, n_j^-]$ for j = 1, 2. Namely, the interaction pattern is completely determined by their asymptotics in $y \to \infty$, where two solitons are labelled.

Although the interaction patterns of the cases of O-type in (ii) and P-type in (iii) are the same, i.e. non-resonant, they describe orbits on different cells in terms of the Schubert decomposition of the Grassmannian, in which each cell is parametrized by a Young diagram. We will give more details of this description in section 3.

Remark 2.4. In [7], the KP equation was introduced to describe a transversal stability of the KdV soliton propagating along the *x*-axis. Then the order of the wavenumber in the *y*-direction is assumed to be much smaller than that in the *x*-direction. This implies that the wave described by the KP equation should be almost parallel to the *y*-axis for a better approximation within the physical setting. In this sense, the P-type solitons are more physical than other two types. The KdV two solitons are also obtained from the P-type solitons with $k_1 < k_2 < 0$ and $k_3 = -k_2$, $k_4 = -k_1$ (see section 5).

3. Grassmannian Gr(N, 2N) and N-soliton solutions

Here we briefly summarize the basics of the Grassmann manifold Gr(N, M) in order to explain that the minors $\xi(i_1, \ldots, i_N)$ in lemma 2.1 provide a coordinate system for Gr(N, M), the Plücker coordinates. Namely a solution given by the τ -function (1.1) can be marked by a point on Gr(N, M). The purpose of this section is to identify an *N*-soliton solution as a 2*N*-dimensional torus orbit of a point on Gr(N, 2N) marked by the minors $\xi(i_1, \ldots, i_N)$. Then using the Schubert decomposition of the Grassmannian Gr(N, 2N), we classify the orbits which represent the *N*-soliton solutions.

3.1. Grassmannian Gr(N, M)

A real Grassmannian Gr(N, M) is the set of N-dimensional subspaces of \mathbb{R}^M . A point ξ of the Grassmannian is expressed by the N-frame of vectors,

$$\xi = [\xi_1, \xi_2, \dots, \xi_N], \quad \text{with} \quad \xi_i = \sum_{j=1}^M a_{ij} e_j \in \mathbb{R}^M,$$

where $\{e_i | i = 1, 2, ..., M\}$ is the standard basis of \mathbb{R}^M , and $(a_{ij}) = A_{(N,M)}$ is the $N \times M$ matrix given in (1.2). Then the Grassmannian $\operatorname{Gr}(N, M)$ can be embedded into the projectivization of the exterior space $\bigwedge^N \mathbb{R}^M$, which is called the Plücker embedding,

$$\operatorname{Gr}(N, M) \hookrightarrow \mathbb{P}\left(\bigwedge^{N} \mathbb{R}^{M}\right)$$
$$\xi = [\xi_{1}, \dots, \xi_{N}] \mapsto \xi_{1} \wedge \dots \wedge \xi_{N}$$

Here the element on $\mathbb{P}(\bigwedge^N \mathbb{R}^M)$ is expressed as

$$\xi_1 \wedge \cdots \wedge \xi_N = \sum_{1 \leqslant i_1 < \cdots < i_N \leqslant M} \xi(i_1, \ldots, i_N) e_{i_1} \wedge \cdots \wedge e_{i_N},$$

where the coefficients $\xi(i_1, \ldots, i_N)$ are $N \times N$ minors given in lemma 2.1, which are called the Plücker coordinates.

It is also well known that the Grassmannian can have the cellular decomposition, called the Schubert decomposition [4],

$$\operatorname{Gr}(N, M) = \bigsqcup_{1 \leqslant i_1 < \dots < i_N \leqslant M} W(i_1, \dots, i_N)$$
(3.1)

where the cells are defined by

$$W(i_{1}, \dots, i_{N}) = \begin{cases} \xi = \begin{pmatrix} 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 \\ 1 & 0 & 0 & \cdots & 0 \\ * & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ * & * & \cdots & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ * & * & * & \cdots & * \end{pmatrix} \in \overline{\mathbb{R}^{M} \times \cdots \times \mathbb{R}^{M}} \end{cases}$$

= {the matrix $\xi = A_{(N,M)}^T$ in the echelon form

whose pivot ones are at (i_1, \ldots, i_N) positions}

Namely, an element $\xi = [\xi_1, \dots, \xi_N] \in W(i_1, \dots, i_N)$ is described by

$$\xi \in W(i_1, \dots, i_N) \quad \Leftrightarrow \quad \begin{cases} (i) & \xi(i_1, \dots, i_N) \neq 0. \\ (ii) & \xi(j_1, \dots, j_N) = 0 & \text{if } j_n < i_n \text{ for some } n. \end{cases}$$

Each cell $W(i_1, \ldots, i_N)$ is called the Schubert cell, and it is convenient to label the cell by the Young diagram $Y = (i_1, \ldots, i_k)$ where the number of boxes is given by $\ell_j = i_j - j$ for $j = 1, \ldots, N$ (counted from the bottom), which also expresses a partition $(\ell_N, \ell_{N-1}, \ldots, \ell_1)$ of the number $|Y| := \sum_{i=1}^N \ell_i$, the *size* of *Y*. The codimension of the cell $W(i_1, \ldots, i_N)$ is then given by the size of *Y*, i.e.,

codim
$$W(i_1, \ldots, i_N) = |Y| = (i_1 + \cdots + i_N) - \frac{1}{2}N(N+1),$$

and the dimension is given by the number of free variables in the echelon form. Note that the top cell of Gr(N, M) is labelled by Y = (1, ..., N), i.e. |Y| = 0, and

$$\dim W(1,\ldots,N) = \dim \operatorname{Gr}(N,M) = N \times (M-N).$$

The main point here is that each matrix $A_{(N,M)}$ in (1.2) can be identified as a point on a Schubert cell of the Grassmannian. Now we identify an *N*-soliton solution as a torus orbit of a point on the Grassmannian Gr(N, 2N), and show that orbits in the different cells give different types of *N*-soliton solutions.

3.2. N-soliton solution as a 2N-dimensional torus orbit

First we note that the τ -function (1.1) in the Wronskian form can be expressed as

$$\tau(x, y, t) = \langle v^N, KD(x, y, t)A^t \cdot v^N \rangle, \qquad (3.2)$$

where v^N is the highest weight vector in a fundamental representation of GL(2*N*) which is given by the element of $\bigwedge^N \mathbb{R}^{2N}$,

$$v^N = e_1 \wedge e_2 \wedge \cdots \wedge e_N$$

and K, A (A^t represents the transpose of A) are $2N \times 2N$ constant matrices defined by

$$\begin{cases} K = (k_{ij})_{1 \le i, j \le 2N}, & \text{with } k_{ij} := (-k_j)^{i-1} \\ A = (a_{ij})_{1 \le i, j \le 2N}. \end{cases}$$

The D(x, y, t) is $2N \times 2N$ diagonal matrix associated with an $(\mathbb{R}^*)^{2N}$ -torus action,

$$D(x, y, t) = \text{diag}(e^{\theta_1}, \dots, e^{\theta_{2N}}) \qquad \text{with} \quad \theta_i = -k_i x + k_i^2 y - k_i^3 t + \theta_i^0$$

Note here that $A^t \cdot v^N$ defines the matrix $A_N = A_{(N,2N)}$ in (1.2), that is,

$$A^t \cdot e_1 \wedge \cdots \wedge e_N = A^t e_1 \wedge A^t e_2 \wedge \cdots \wedge A^t e_N,$$

which can be identified as A_N^t . The inner product $\langle \cdot, \cdot \rangle$ on $\bigwedge^N \mathbb{R}^{2N}$ is defined by

$$\langle v_1 \wedge \cdots \wedge v_j, w_1 \wedge \cdots \wedge w_j \rangle = \det[(\langle v_m, w_n \rangle)_{1 \leq m, n \leq j}],$$

where $\langle v_m, w_n \rangle$ is the standard inner product of $v_m, w_n \in \mathbb{R}^{2N}$.

The expression (3.2) implies that the solution u(x, y, t) given by the τ -function (1.1) is a 2*N*-dimensional torus orbit, $(\mathbb{R}^*)^{2N}$ -orbit, of a point on Gr(N, 2N) marked by A_N . Note also that the Schubert cell $W(i_1, \ldots, i_N)$ is invariant under this torus action. The orbits, *N*-soliton solutions, can be first classified in terms of the Schubert decomposition with the index sets (i_1, \ldots, i_N) .

Example 3.1 Gr(2, 4). The Schubert decomposition of Gr(2, 4) is given by

$$\operatorname{Gr}(2,4) = \bigsqcup_{1 \leqslant i, j \leqslant 4} W(i, j).$$

There are six cells W(i, j) with dimW(i, j) = 7 - (i+j). (Note 7 = N(M-N) + N(N+1)/2 with N = 2, M = 4.)

(i) W(1, 2). This is a top cell of maximum dimension 4, and a point on the cell is given by

$$A_2 = \begin{pmatrix} 1 & 0 & * & * \\ 0 & 1 & * & * \end{pmatrix},$$

which includes 2-soliton solutions of T-type, $A_2^{(T)}$, and P-type, $A_2^{(P)}$.

(ii) W(1, 3). A point on this cell is marked by

$$A_2 = \begin{pmatrix} 1 & * & 0 & * \\ 0 & 0 & 1 & * \end{pmatrix}.$$

The 2-soliton solution of O-type with $A_2^{(O)}$ belongs to this cell. Thus O-type and P-type belong to different cells, even though they show non-resonant interactions.

(iii)
$$W(1, 4)$$
. The A_2 matrix has the form

$$A_2 = \begin{pmatrix} 1 & * & * & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

In this case, nonzero minors are given by $\xi(i, 4)$ for i = 1, 2, 3. This implies that the exponential term $E_4 = e^{\theta_4}$ becomes a common factor in the τ -function. Then the solution gives (2, 1)-soliton solution, that is, two incoming solitons and one outgoing soliton in the asymptotics $y \to \pm \infty$ (see [1]).

(iv) W(2, 3). The A_2 matrix is given by

$$A_2 = \begin{pmatrix} 0 & 1 & 0 & * \\ 0 & 0 & 1 & * \end{pmatrix}.$$

Then the exponential term $E_1 = e^{\theta_1}$ is missing in the τ -function, and the solution describes a (1, 2)-soliton solution.

(v) W(2, 4). The A_2 matrix is

$$A_2 = \begin{pmatrix} 0 & 1 & * & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

The solution is a 1-soliton solution of [2, 3]-soliton.

(vi) W(3, 4). The A_2 matrix is

$$A_2 = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

The τ -function is just a product of $E_3 = e^{\theta_3}$ and $E_4 = e^{\theta_4}$, and the solution is trivial, u = 0.

Remark 3.2. Since W(1, 3) is a boundary of the top cell W(1, 2), a point on W(1, 3) can be obtained by a limit of a sequence of points in W(1, 2). For example, consider the following matrix (representing one-parameter family of points in W(1, 2)),

$$A_2(\epsilon) = \begin{pmatrix} 1 & 0 & -\epsilon^{-1} & -\epsilon^{-1} \\ 0 & 1 & \epsilon^{-1} + \epsilon & \epsilon^{-1} - \epsilon \end{pmatrix},$$

where the parameter ϵ is a positive number. If $\epsilon < 1$, then the matrix gives a 2-soliton solution of T-type (note that all the minors are positive). Then in the limit $\epsilon \rightarrow 0$, the matrix can be interpreted as the O-type matrix $A_2^{(O)}$ in W(1, 3) (recall here that $\epsilon^{-1}\tau \equiv \tau$ is the Plücker coordinate, i.e. they both give the same solution). It is also obvious that $A_2^{(P)}$ is obtained by a limit of the T-type matrix. Thus T-type is generic, while the O-type and P-type are nongeneric. Also in the Gallipoli conference in June–July 2004, Pashaev showed that a 2-soliton solution of T-type is a degenerate case of 4-soliton solution of non-resonant type (obtained by the Hirota method) [8].

Since *N*-soliton solution is an orbit on a particular Schubert cell $W(i_1, \ldots, i_N)$ which is a boundary of the top cell $W(1, \ldots, N)$, it seems to be true that all the *N*-soliton solutions are obtained by the limits of the τ -function of T-type which lives on the top cell. We will discuss more details in a future communication.

4. Construction of the A_N matrix

In this section, we give an explicit construction of the matrix A_N for N-soliton solution parametrized by the pair $(\mathbf{n}^+, \mathbf{n}^-)$: the key idea of the construction is based on the classification of 2-soliton solutions, that is, a local structure of the matrix contains one of those types, O-, T- or P-type. With a given pair $(\mathbf{n}^+, \mathbf{n}^-)$, we construct an N-soliton solution consisting of N line solitons with the labels $[n_j^+, n_j^-]$ for j = 1, ..., N. In order to do this, let us first define

Definition 4.1. The length of $[n_i^+, n_j^-]$ -soliton, denoted by L_j , is defined by

$$L_j := \min \left\{ n_j^- - n_j^+, 2N - n_j^- + n_j^+ \right\}.$$

Note that $1 \leq L_j \leq N$ for all $j = 1, \ldots, N$.

In the cases of 2-soliton solutions, we have

- (i) for O-type, $L_1 = L_2 = 1$;
- (ii) for T-type, $L_1 = L_2 = 2$;
- (iii) for P-type, $L_1 = L_2 = 1$.

Then we note that the length of the line soliton gives the condition on the minors. In those cases, $\xi(n_i^+, n_i^-) = 0$ if and only if $L_j < 2$.

For *N*-soliton solutions with $[n_j^+, n_j^-]$ -solitons, we impose that the τ -functions satisfy the following condition which plays a crucial role for the construction of A_N :

Definition 4.2. We say that a τ -function satisfies the N-soliton condition, if it satisfies the duality (definition 2.3) and has missing exponential terms (i.e. vanishing minors) if and only if there exists a $[n_j^+n_j^-]$ -soliton whose length is less than N. If $L_j < N$ for some j, we require that

• for $L_j = n_j^- - n_j^+$, then the $N \times N$ minors satisfy

$$\xi(\ldots, [n_{i}^{+}, n_{j}^{+} + 1, \ldots, n_{i}^{-}], \ldots) = 0,$$

• for $L_j = 2N - n_i^- + n_i^+$, then

$$\xi\left(\left[1,\ldots,n_{j}^{+}\right],\ldots,\left[n_{j}^{-},\ldots,2N\right]\right)=0.$$

Here the $L_j + 1$ *entries inside the brackets* $[\cdots]$ *are consecutive numbers, and the other entries in the* '...' *outside the* $[\cdots]$ *can take any numbers.*

Recall that in the case of *N*-soliton solutions for the Toda lattice, every soliton has the length *N*, and there is no vanishing minor [1]. The *N*-soliton condition is a natural extension of that in the case of 2-soliton solutions, and it provides local information of 2-soliton interactions in an *N*-soliton solution which are classified into three types, O, T and P. Note in particular, with this condition, that one identifies all the vanishing minors in the τ -function.

Let us now construct the matrix A_N : the construction has several steps, and it might be better to explain the steps using an explicit example.

Let us consider the case N = 4 with $\mathbf{n}^+ = (1, 2, 4, 5)$ and $\mathbf{n}^- = (3, 7, 6, 8)$:

Step I. Since the minors $\xi(1, 2, 4, 5) \neq 0$ and $\xi(3, 6, 7, 8) \neq 0$, one can easily see that A_N matrix has the structure

$$\begin{pmatrix} * & * & * & 0 & 0 & 0 & 0 \\ 0 & * & * & * & * & * & * \\ 0 & 0 & 0 & * & * & * & * \\ 0 & 0 & 0 & 0 & * & * & * & * \end{pmatrix},$$
(4.1)

where '*' marks a possible nonzero entry, and in particular, the first element in each row should be nonzero (this is the pivot place). Note here that $\xi(1, 2, 3, j) = 0$ for any j, which is also considered as the 4-soliton condition with the length $L_1 = 2$ of the [1, 3]-soliton. Note that $\xi(i_1, i_2, i_3, i_4) = 0$ for any $4 \le i_1, \ldots, i_4 \le 8$ are dual to $\xi(1, 2, 3, j) = 0$ for some j.

Step II. In this step, we put the form (4.1) into the RREF. First we normalize the first nonzero entries to be 1 in every row, and eliminate the (2, 4)-entry from the third row and the (3, 5)-entry from the fourth row. Note that this process does not affect the 0s of the matrix in (4.1). Then we have

$$\begin{pmatrix} 1 & * & * & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & * & 0 & 0 & * & * & * \\ 0 & 0 & 0 & 1 & 0 & * & * & * \\ 0 & 0 & 0 & 0 & 1 & * & * & * \end{pmatrix}.$$
(4.2)

Further eliminating '*' in the second column by row reduction using the 2nd row, we have

$$\begin{pmatrix} 1 & 0 & * & 0 & 0 & \# & \# & \# \\ 0 & 1 & * & 0 & 0 & \# & \# & \# \\ 0 & 0 & 0 & 1 & 0 & * & * & * \\ 0 & 0 & 0 & 0 & 1 & * & * & * \end{pmatrix},$$
(4.3)

where the two rows in the 2 × 3 submatrix with # entries are parallel (recall $\xi(5, 6, 7, 8) = \xi(4, 6, 7, 8) = 0$). Also note that the signs of nonzero entries are uniquely determined by the requirement of all the minors to be non-negative; for example, the last three entries in the first row are non-positive, and the signs of the last three entries of the following rows change alternatively. Up to this point, we have not used the order in **n**⁻. In another words, the form of the matrix in (4.3) is common for any **n**⁻ with a given **n**⁺.

Step III. Now we use the orders in \mathbf{n}^- to determine explicit entries in the matrix for a 4-soliton solution consisting of four line solitons labelled by $[n_j^+, n_j^-]$, i.e. [1, 3], [2, 7], [4, 6], [5, 8]. In this step, we identify all other zero elements (i.e. zero minors) of the matrix A_N using the *N*-soliton condition (definition 4.2). The following graph shows the overlapping relations among those solitons and the length of each soliton:

Now we use the 4-soliton condition. First we note that from $L_1 = 2 < 4$ we have $\xi(1, 2, 3, j) = 0$ for any j (see step I). Also from $L_3 = 2$, we have $\xi(4, 5, 6, j) = 0$ for any j. In particular, $\xi(1, 4, 5, 6) = 0$ implies that (2, 6)-entry must be zero, so that (1, 6)-entry is also zero. Also $\xi(3, 4, 5, 6) = 0$ gives $\xi(1, 2, 7, 8) = 0$ which is also the 4-soliton condition with $L_2 = 3$. The $\xi(1, 2, 7, 8) = 0$ implies that the 2 × 2 determinant of the right bottom corner must be zero. We then get the following structure,

$$\begin{pmatrix} 1 & 0 & * & 0 & 0 & 0 & \# & \# \\ 0 & 1 & * & 0 & 0 & 0 & \# & \# \\ 0 & 0 & 0 & 1 & 0 & * & \times & \times \\ 0 & 0 & 0 & 0 & 1 & * & \times & \times \end{pmatrix},$$

where the 2 \times 2 minor with the \times entries is zero. Also from the partial overlaps (i.e. T-type interaction) in [1, 3] with [2, 7], in [2, 7] with [5, 8] and in [4, 6] with [5, 8], we need nonzero entries for those marked by *, # and \times . Then one can easily find an explicit example of the matrix A_4 whose 4 \times 4 minors are all non-negative,

$$\begin{pmatrix} 1 & 0 & -2 & 0 & 0 & 0 & -3 & -9 \\ 0 & 1 & 1 & 0 & 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 1 & 0 & -1 & -2 & -2 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{pmatrix}.$$

In figure 4, we illustrate a 4-soliton solution generated with this matrix. Note that there are three resonant vertices corresponding to the interactions between [1, 3] and [2, 7], [2, 7] and [5, 8], and [4, 6] and [5, 8] (see the overlapping graph in (4.4)). Other three vertices are two of O-type and one P-type.

Figure 4. 4-soliton solutions labelled by $\mathbf{n}^+ = (1, 2, 4, 6)$ and $\mathbf{n}^- = (3, 7, 6, 8)$. The left figure shows the 4-soliton solution at t = 0 and the right one at t = 10. The parameters are given by $\theta_j^0 = 0$ for all j = 1, ..., 8, and $(k_1, ..., k_8) = (-3/2, -1, -1/2, 0, 1/2, 1, 3/2, 2)$. The solution at t = -10 can be obtained by the reflection (-x, -y) of the right graph.

One can show the following proposition for the general case:

Proposition 4.1. If there is a pair $[n_j^+, n_j^-]$ with $L_j = n_j^- - n_j^+ < N$, then the $N \times (L_j + 1)$ submatrix (a_{mn}) with $1 \le m \le N$ and $n_j^+ \le n \le n_j^-$ of the matrix A_N has the maximum rank L_j . (The same is also true for the case $L_j = 2N - n_j^- + n_j^+$.)

Proof. Since $L_j < N$, we have $\xi([n_j^+, \dots, n_j^-], *, \dots, *) = 0$ (see the *N*-soliton condition). Here the entries marked with * are arbitrary columns of A_N whose maximum rank is *N*. If we choose $N - L_j - 1$ independent columns for those entries, then the $\xi = 0$ implies that the submatrix can have at most the rank L_j .

Then the following is immediate as a corollary of this proposition:

Corollary 4.1. If a pair $[n_j^+, n_j^-]$ has the minimum length, i.e. $n_j^- = n_j^+ + 1$, then the $N \times 2$ submatrix with the columns (a_{mn}) with $1 \le m \le N$ and $n = n_j^+, n_j^-$ of the matrix should be in the form,

 $\begin{bmatrix} 0 & 0 \\ \vdots & \vdots \\ 0 & 0 \\ 1 & 1 \\ 0 & 0 \\ \vdots & \vdots \\ 0 & 0 \end{bmatrix}$, where 1s are in the *j* th row.

Proof. From proposition 4.1, the rank of the submatrix is 1. This implies that the rows of the submatrix are all proportional. Since the entry (j, n_j^+) is the pivot 1, all the other entries of this column should be zero in the RREF. This gives the result.

This corollary shows that the line soliton marked by $[n_j^+, n_j^-]$ of length 1 intersects with all other solitons without resonance, that is, the interactions are either O-type or P-type. Note that in this case $[n_j^+, n_j^-]$ cannot have partial overlap with other pairs, and this can be seen in the matrix A_N . Proposition 4.1 provides the interaction structure of N-soliton solution for O-type and P-type.

We now show that the Young diagrams Y^+ and Y^- provide some information on the interaction pattern of the *N*-soliton solution. If we ignore the phase shifts and resonances among the solitons, the *N*-soliton solution has $\frac{N(N-1)}{2}$ vertices in a generic situation. Then one can find the number of vertices having a particular type of interactions.

Theorem 4.3. The N-soliton solution labelled by the pair of Young diagrams (Y^+, Y^-) has

- $|Y^+|$ number of vertices of O-type, and
- $|Y^{-}|$ number of vertices of P-type.

The number of resonant vertices, T-type, is then given by

$$\frac{N(N-1)}{2} - |Y^+| - |Y^-|.$$

Proof. The Young diagram Y^+ can be obtained directly from the matrix A_N : for example, consider $\mathbf{n}^+ = (1, 2, 4, 5, 7)$ and $\mathbf{n}^- = (3, 9, 6, 10, 8)$. Then the graph showing the overlaps among $[n_i^+, n_i^-]$ is given by

where the boxes under the non-pivots (•) give Y^+ , which is given by (1, 1, 2) representing the number of boxes in the row from the bottom (Y^+ -shape is just upside down picture of one given in the graph). It is then obvious that each \Box provides O-type interaction, i.e. two solitons having no overlap. For example, [1, 3] has no overlap with [4, 6], [5, 10] and [7, 8]. This proves that $|Y^+|$ gives the number of vertices of O-type.

The diagram Y^- gives the number of *reverses* in the sequence (n_1^-, \ldots, n_N^-) . Again consider the example above. The number $n_2^- = 9$ has two reverses, 6 and 8. Then from the graph above, this implies that [2, 9] has complete overlap with [4, 6] and [7, 8], i.e. [2, 9]-soliton has P-type interaction with those solitons. Now it is obvious that $|Y^-|$ gives the number of vertices of P-type.

Before ending this section, we give a complete list of the 3-soliton solutions with explicit examples of A_3 matrices:

Case a: $\mathbf{n}^+ = (1, 2, 3)$. In this case we have $m_{\mathbf{n}^+} = 1 \cdot 2 \cdot 3 = 6$ different choices of \mathbf{n}^- ; that is, six different 3-soliton solutions. Since the Young diagram Y^+ has no box, $Y^+ = \emptyset$, there is no O-type vertex in those solutions.

a1: $\mathbf{n}^- = (4, 5, 6)$. This is the case of the Toda lattice [1]. The pair of Young diagrams is (\emptyset, \emptyset) , that is, all the vertices are T-type. Example of the matrix A_3 is given by the following matrix. We also show the overlapping graph:

$$\begin{pmatrix} 1 & 0 & 0 & 1 & 3 & 6 \\ 0 & 1 & 0 & -1 & -2 & -3 \\ 0 & 0 & 1 & 1 & 1 & 1 \end{pmatrix}, \qquad \begin{array}{cccc} \circ & - & - & \bullet \\ & \circ & - & - & \bullet \\ & & \circ & - & - & \bullet \\ & & \circ & - & - & \bullet \\ & & \circ & - & - & \bullet \\ & & & \end{array}$$

a2: $\mathbf{n}^- = (4, 6, 5)$. This has two T-type vertices and one P-type vertex, i.e. $Y^- = \Box$. In particular, the P-type interaction between [2, 6]- and [3, 5]-solitons implies that the (3, 6)-entry should be zero (because of $\xi(1, 2, 6) = 0$). Then we have an example

(1)	0	0	1	2	4		0	_	_	٠		
0	1	0	-1	-2	-3	,		0	_	_	—	•
0/	0	1	1	2 -2 1	0)			0	_	•	

Note here that the duality of $\xi(1, 2, 6) = 0$ and $\xi(3, 4, 5) = 0$. Both vanishing minors are due to the 3-soliton condition for $L_2 = L_3 = 2$.

a3: $\mathbf{n}^- = (5, 4, 6)$. This has again two T-type vertices and one P-type vertex (note that the Young diagram Y^- is the same as case 2a). An example of A_3 is

(1)	0	0	0	1	2		0	—	—	—	٠	
0	1	0	-1	-2	$ \begin{array}{c} 2 \\ -2 \\ 1 \end{array} $,		0	_	•		
0	0	1	1	1	1 /				0	_	_	•

Again note the 3-soliton conditions for $L_1 = L_2 = 2$ which give $\xi(1, 5, 6) = 0$ and its dual $\xi(2, 3, 4) = 0$. The $\xi(2, 3, 4)$ then gives (1, 4)-entry to be zero.

a4: $\mathbf{n}^- = (5, 6, 4)$. There are two P-type and one T-type vertices. We have

$\binom{1}{1}$	0	0	0	1	1	١	0	—	—	—	٠	
0	1	0	0	-2	-1	,		0	_	_	_	•
0	0	1	1	0	$ \begin{array}{c} 1 \\ -1 \\ 0 \\ \end{pmatrix} $	/			0	٠		

Note here that the [3, 4]-soliton has a P-type interaction with other two solitons, which gives the last row to be (0, 0, 1, 1, 0, 0) and third and fourth columns to be $e_3 \in \mathbb{R}^3$ (see corollary 4.1).

a5: $\mathbf{n}^- = (6, 4, 5)$. This case is similar to the previous one, i.e. two P-types and one T-type. A_3 is

(1)	0	0	0	0	1)		0	—	—	—	—	٠
0	1	0	-1	-2	0	,		0	_	•		
$\langle 0 \rangle$	0	1	1	$0 \\ -2 \\ 1$	0)				0	—	٠	

a6: $\mathbf{n}^- = (6, 5, 4)$. All the vertices are of P-type, and the matrix A_3 can be written as

$\binom{1}{1}$	0	0	0	0	1		0	_	—	_	_	•
0	1	0	0	$0 \\ -1 \\ 0$	0	,		0	—	_	٠	
0	0	1	1	0	0)				0	٠		

The Young diagram Y^- is maximum with three boxes.

In these examples, one should note that the pattern of the zeros in the last three columns (non-pivot columns) presents the shape of the corresponding Young diagram Y^- .

Case b: $\mathbf{n}^+ = (1, 2, 4)$. There are $m_{\mathbf{n}^+} = 1 \cdot 2 \cdot 2 = 4$ different types of 3-soliton solutions. Now the Y^+ has one box, there is one O-type interaction in these solutions.

b1: $\mathbf{n}^- = (3, 5, 6)$. There are two T-type vertices and one O-type. An example of A_3 matrix is

	(1)	0	-1	0	1	2)		0	—	٠			
	0	1	2	0	1 -1 1	-2	,		0	_	_	•	
	0	0	0	1	1	1)					0	_	•
4			8/1	2 2		1 E	. (1 5	(Δ				

Note here the duality in $\xi(1, 2, 3) = 0$ and $\xi(4, 5, 6) = 0$.

b2: $\mathbf{n}^- = (3, 6, 5)$. The Y^- has one box, and the vertices are all different types; O, N and T. An example of A_3 can be

$$\begin{pmatrix} 1 & 0 & -1 & 0 & 0 & 2 \\ 0 & 1 & 1 & 0 & 0 & -1 \\ 0 & 0 & 0 & 1 & 1 & 0 \end{pmatrix}, \qquad \begin{array}{cccc} \circ & - & \bullet \\ & \circ & - & - & \bullet \\ & \circ & \bullet & \bullet \end{array}$$

b3: $\mathbf{n}^- = (5, 3, 6)$. This is similar to the previous case of b2. A_3 can be

(1)	0	0	0	1	2		0	—	—	—	٠	
$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$	1	1	0	0	0	,		0	٠			
0	0	0	1	1	1)					0	_	•

b4: $\mathbf{n}^- = (6, 3, 5)$. The Y^- has two boxes, and there are two P-type vertices and one O-type. The matrix A_3 is given by

(1)	0	0	0	0	1)		0	_	—	_	_	٠
$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$	1	1	0	0	0	,		0	٠			
$\left(0 \right)$	0	0	1	1	0)					0	٠	

Case c: $\mathbf{n}^+ = (1, 2, 5)$. There are $m_{\mathbf{n}^+} = 1 \cdot 2 \cdot 1 = 2$ different 3-soliton solutions. Since the Y^+ has two horizontal boxes, there are two O-type vertices in these solutions.

c1: $\mathbf{n}^- = (3, 4, 6)$. The Y^- has no box, and the 3-soliton solution has one T-type interaction with two O-types. A matrix A_3 can be

$$\begin{pmatrix} 1 & 0 & -1 & -2 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \end{pmatrix}, \qquad \begin{array}{cccc} \circ & - & \bullet \\ & \circ & - & \bullet \\ & & & \circ & \bullet \end{array}$$

c2: $\mathbf{n}^- = (4, 3, 6)$. The Y^- has one box, and the solution has one P-type interaction with two O-types. The matrix A_3 is given by

$$\begin{pmatrix} 1 & 0 & 0 & -1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \end{pmatrix}, \qquad \circ \quad \bullet \qquad \circ \quad \bullet$$

Case d: $\mathbf{n}^+ = (1, 3, 4)$. The Y^+ has two boxes, and there are $m_{\mathbf{n}^+} = 1 \cdot 1 \cdot 2 = 2$ different 3-soliton solutions which have two O-type interactions:

d1: $\mathbf{n}^- = (2, 5, 6)$. Since $Y^- = \emptyset$, there is one T-type intersection with two O-types. An example of the matrix A_3 is

d2: $\mathbf{n}^- = (2, 6, 5)$. Now Y^- has one box, and the solution has one P-type interaction with two O-types. The matrix A_3 is given by

Figure 5. 3-soliton solutions. All the cases assume $\theta_j^0 = 0$ for all j = 1, ..., 6. The top left figure shows the solution in case a1 with the parameters $(k_1, ..., k_6) = (-3, -2, 0, 1, 2, 3)$ and t = 7. The top right figure shows case a3 with (-3, -1, 0, 1, 2, 3) and t = 7. The one in the bottom left shows case a5 with (-4, -1, 0, 1, 2, 3) and t = 4, and that in the bottom right shows case c1 with (-2, -1, 0, 1, 2, 3) and t = 4.

Case e: $\mathbf{n}^+ = (1, 3, 5)$. This is the ordinary 3-soliton solution with the matrix

$$\begin{pmatrix} 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \end{pmatrix}, \qquad \circ \bullet$$

Some of the 3-soliton solutions are illustrated in figure 5. Note that in the matrix A_3 , if there is only one nonzero entry in a column (like a pivot), then one can set the entry to be +1 or -1 by choosing some phase constant θ_j^0 . Those A_3 in cases a6, b4, c2, d2 and e are unique in this sense.

5. N-soliton solutions of the KdV equation

Here we consider *N*-soliton solutions of the KdV equation, and show that they cannot have a resonant interaction. *N*-soliton solutions of the KdV equation can be obtained by the

Figure 6. 3-soliton solutions of the KdV equation labelled by $\mathbf{n}^+ = (1, 2, 3)$ and $\mathbf{n}^- = (6, 5, 4)$. The left figure shows the 3-soliton solution in the *x*-*y* plane at t = 25 with $\theta_j = 0, \forall j$. The right one shows the solution in the *x*-*t* plane with different θ_j . The k_j are given by $(k_1, \ldots, k_6) = (-4/3, -1, -1/2, 1/2, 1, 4/3)$.

constraint $\partial u/\partial y = 0$ in the KP equation. Since line solitons are given by $[n_j^+, n_j^-]$ -solitons for j = 1, ..., N, the constraint implies that all the solitons are parallel to the y-axis, i.e.

$$c_j = k_{n_j^+} + k_{n_j^-} = 0$$
 for all $j = 1, ..., N$.

Now from the ordering $k_1 < \cdots < k_{2N}$, we assume k_j to satisfy

$$k_1 < k_2 < \dots < k_N < 0,$$
 $k_{N+j} = -k_{N-j+1}$ for $j = 1, \dots, N$

Then we take the set $(\boldsymbol{n}^{\!\!\!\!+},\boldsymbol{n}^{\!\!\!-})$ as

$$n_j^+ = j,$$
 $n_j^- = 2N - j + 1$ for $j = 1, ..., N,$

which leads to $c_j = 0$ for all j = 1, ..., N. In terms of the matrix A_N , this corresponds to

$$A_N = \begin{pmatrix} 1 & 0 & \cdots & 0 & 0 & \cdots & 0 & * \\ 0 & 0 & \cdots & 0 & 0 & \cdots & * & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & * & \cdots & 0 & 0 \end{pmatrix}$$

This matrix indicates that any pair of line solitons are of P-type, that is, all the interactions are non-resonant. Each line soliton has the following form:

$$u(x,t) = 2k_j^2 \operatorname{sech}^2 \theta_j, \quad \text{with} \quad \theta_j = -k_j x - k_j^3 t + \theta_j^0.$$

Thus each soliton has the velocity $dx/dt = -k_j^2$. We illustrate a 3-soliton solution of the KdV equation in figure 6.

Acknowledgments

The author would like to thank G Biondini for valuable discussions and a Mathematica program for the calculation of the τ -functions. He also thanks O Pashaev for showing him the reference [8] before publication and for valuable discussions on AKNS reductions of the KP equation. This research is partially supported by the NSF grant DMS0404931.

References

- Biondini G and Kodama Y 2003 On a family of solutions of the Kadomtsev–Petviashvili equation which also satisfy the Toda lattice hierarchy J. Phys. A: Math. Gen. 36 10519–36
- Freeman N C and Nimmo J J C 1983 Soliton-solutions of the Korteweg–deVries and Kadomtsev–Petviashvili equations: the Wronskian technique *Phys. Lett.* A 95 1–3
- [3] Gantmacher F R 1959 Theory of Matrices vol 2 (New York: Chelsea)
- [4] Griffiths P and Harris J 1978 Principles of Algebraic Geometry (New York: Wiley)
- [5] Hirota R, Ohta Y and Satsuma J 1988 Wronskian structures of solitons for soliton equations *Prog. Theor. Phys.* Suppl. 94 59–72
- [6] Infeld E and Rowlands G 1990 Nonlinear Waves, Solitons and Chaos (Cambridge: Cambridge University Press) 205–12
- [7] Kadomtsev B B and Petviashvili V I 1970 On the stability of solitary waves in weakly dispersive media Sov. Phys. Dokl. 15 539–41
- [8] Pashaev O K and Yerbag-Francisco M L 2004 Degenerate four virtual soliton resonance for KP-II Preprint hep-th/0410031
- [9] Sato M 1981 Soliton equations as dynamical systems on an infinite dimensional Grassmann manifolds RIMS Kokyuroku 439 30–46